摘要:
In an optical parametric amplifier of the invention, pumping light which is amplified using a practical optical amplifier such as an EDFA is supplied together with signal light having a wavelength outside the amplification band of the optical amplifier, to a nonlinear optical medium via a multiplexer, to thereby amplify the signal light by an optical parametric amplification effect due to the pumping light in the nonlinear optical medium. As a result, the amplification band of a practical optical amplifier such as an EDFA, can be extended, and the noise characteristics can be improved.
摘要:
The present invention relates to a method for optical fiber transmission which can increase a transmission distance. A first optical fiber having dispersion is first provided. An optical signal is next supplied to the first optical fiber so that the optical signal is compressed on the time axis as propagating in the first optical fiber. In the case that the dispersion is normal dispersion, for example, prechirping is performed so that the optical signal has down-chirp. A compressed optical signal output from the first optical fiber is supplied to an optical device having a saturated gain. According to this method, the transmission distance can be increased by the effective combination of compression of the optical signal and waveform shaping by the optical device.
摘要:
An optical signal and pump light are input to a nonlinear optical medium. In the nonlinear optical medium, the optical signal is amplified with a nonlinear effect caused by the pump light. A monitor circuit monitors parametric gain in the nonlinear optical medium. A first power controller increases input power of the optical signal so that the gain reaches saturation. A second power controller controls input power of the pump light so as to obtain a desired gain.
摘要:
The polarization direction of an optical signal is changed by a polarization controller so as to be orthogonal to a main axis of a polarizer. A control pulse generator generates control pulses from control beam with a wavelength which is different from the wavelength of the optical signal. The optical signal and the control pulse are input to a nonlinear optical fiber. In the nonlinear optical fiber, the optical signal, during a time period in which the optical signal and the control pulse coincide, is amplified with optical parametric amplification around a polarization direction of the control pulse. The optical signal, during the time period in which the optical signal and the control pulse coincide, passes through the polarizer.
摘要:
A measured optical pulse and a sampling optical pulse having different wavelengths are input to a nonlinear optical effect, that is, (i) a nonlinear optical medium generating four optical wave mixing or three optical wave mixing, and the optical intensity of the wavelength converted light generated by the four optical wave mixing or four optical wave mixing generated in a common portion in time of the two optical pulses is detected, thereby observing the waveform of a measured light, or (ii) a nonlinear optical medium generating mutual phase modulation which generates mutual phase modulation, and the optical intensity of converted light switched using a phase shift by mutual phase modulation generated in a common portion in time is detected, thereby observing the waveform of measured light.
摘要:
The phase modulation in which the frequency chirp becomes 0 at the timing which the user wants to synchronize, and the frequency chirp becomes larger as the time deviates in a positive or negative direction from this timing is applied to the signal light with each wavelength comprising pulse train of different timing. Thus, the optical pulses which deviate from the timing which the user wants to synchronize receive the frequency chirp in accordance with the amount of the timing deviation. The WDM signal light which has been chirped in this way is made to pass a linear dispersive medium, and the dispersion fit for the amount of frequency chirp is made to be given. By adjusting the amount of dispersion, it is possible to obtain the pulses which conform to the timing at which the user wants to synchronize the pulses of each wavelength.
摘要:
A vehicle suspension mounting structure capable of sufficiently improving the strength and rigidity of a strut fixing part, while minimizing adverse effects such as increased vehicle weight. Side members of a sectional shape having an upper opening are curved inward in the vehicle width direction so as not to interfere with strut mounting faces. Notched portions are formed to extend from the strut mounting faces to outer side faces of the side members, and brackets made of a thick plate to which upper portions of struts are fixed are disposed in the notched portion and spot welded thereto.
摘要:
The device according to the present invention relates to phase conjugate conversion and wavelength conversion. This device includes a polarization beam splitter and a polarization maintaining fiber (PMF). The polarization beam splitter has first, second, and third ports. The first port is supplied with signal light including first and second polarization components respectively having first and second polarization planes orthogonal to each other, and with pump light. The first and second ports are coupled by the first polarization plane, and the first and third ports are coupled by the second polarization plane. The PMF has first and second ends, and has a polarization mode to be maintained between the first and second ends. The first end is optically connected to the second port so that the first polarization plane is adapted to the polarization mode, and the second end is optically connected to the third port so that the second polarization plane is adapted to the polarization mode. Converted light generated by four-wave mixing based on the signal light and the pump light in the PMF is output from the first port, so that the converted light can be taken out by an optical circulator.
摘要:
An optical communication system which uses optical phase conjugation to compensate for chromatic dispersion and optical Kerr effect. The optical communication system includes a first fiber, a phase conjugator, and a second fiber. The first fiber transmits a light signal therethrough, and is a polarization maintaining fiber. The light signal is a linear polarized wave. The phase conjugator receives the light signal from the first fiber and produces a corresponding phase conjugate light signal. The second fiber receives the phase conjugate light signal from the phase conjugator and transmits the phase conjugate light signal therethrough. A wavelength division multiplexing optical communication system is also provided which uses optical phase conjugation to compensate for dispersion and optical Kerr effect.
摘要:
An optical fiber communication system according to the present invention has, for example, first and second phase conjugators. The first phase conjugator converts a signal beam from a first optical fiber into a first phase conjugate beam. The first phase conjugate beam is supplied to the second phase conjugator by a second optical fiber. The second phase conjugator converts the first phase conjugate beam into a second phase conjugate beam. The second phase conjugate beam is transmitted by a third optical fiber. The second optical fiber is composed of a first portion located between the first phase conjugator and a system midpoint and a second portion located between the system midpoint and the second phase conjugator. The total dispersion of the first optical fiber substantially coincides with the total dispersion of the first portion, and the total dispersion of the second portion substantially coincides with the total dispersion of the third optical fiber. By the construction, waveform distortion by chromatic dispersion or nonlinearity is compensated for.