Abstract:
A sealed structure with high sealing capability, in which a pair of substrates is attached to each other with a glass layer is provided. The sealed structure has a first and second substrates, a first surface of the first substrate facing a first surface of the second substrate, and the glass layer which is in contact with the first and second substrates, defines a space between the first and second substrates, and is provided along the periphery of the first surface of the first substrate. The first substrate has a corner portion. The area of the first surface of the first substrate is smaller than or equal to that of the first surface of the second substrate. In at least one of respective welded regions between the glass layer and the first or second substrate, the width of the corner portion is larger than that of the side portion.
Abstract:
A sealed structure which has high sealing capability and whose border can be slim is provided. The sealed structure includes a pair of substrates whose respective surfaces face each other with a space therebetween, and a glass layer which is in contact with the substrates, defines a space between the substrates, and has at least one corner portion and side portions in continuity with the corner portion. The width of the corner portion of the glass layer is smaller than or equal to that of the side portion of the same. The sealed structure may comprise a highly reliable light-emitting element including a layer containing a light-emitting organic compound provided between a pair of electrodes.
Abstract:
A display device that can easily have high resolution is provided. A display device having both high display quality and high resolution is provided. A display device with high contrast is provided. A first EL film is deposited in contact with a top surface and a side surface of each of a first pixel electrode and a second pixel electrode each having a tapered shape. A first sacrificial film is formed to cover the first EL film. The first sacrificial film and the first EL film are etched to expose the second pixel electrode and form a first EL layer over the first pixel electrode and a first sacrificial layer over the first EL layer, and then, the first sacrificial layer is removed. The first EL film and the second EL film are etched by dry etching. The first sacrificial layer is removed by wet etching.
Abstract:
Display unevenness in a display panel is suppressed. A display panel with a high aperture ratio of a pixel is provided. The display panel includes a first pixel electrode, a second pixel electrode, a third pixel electrode, a first light-emitting layer, a second light-emitting layer, a third light-emitting layer, a first common layer, a second common layer, a common electrode, and an auxiliary wiring. The first common layer is positioned over the first pixel electrode and the second pixel electrode. The first common layer has a portion overlapping with the first light-emitting layer and a portion overlapping with the second light-emitting layer. The second common layer is positioned over the third pixel electrode. The second common layer has a portion overlapping with the third light-emitting layer. The common electrode has a portion overlapping with the first pixel electrode with the first common layer and the first light-emitting layer provided therebetween, a portion overlapping with the second pixel electrode with the first common layer and the second light-emitting layer provided therebetween, a portion overlapping with the third pixel electrode with the second common layer and the third light-emitting layer provided therebetween, and a portion in contact with a top surface of the auxiliary wiring.
Abstract:
A display device having a photosensing function is provided. A highly convenient display device is provided. The display device includes a light-receiving element and a light-emitting element in a display portion. The light-receiving element includes a first pixel electrode, an active layer, and a common electrode. The light-emitting element includes a second pixel electrode, a light-emitting layer, and a common electrode. The active layer is positioned over the first pixel electrode. The active layer contains a first organic compound. The light-emitting layer is positioned over the second pixel electrode. The light-emitting layer contains a second organic compound different from the first organic compound. The common electrode includes a portion overlapping with the first pixel electrode with the active layer provided therebetween, and a portion overlapping with the second pixel electrode with the light-emitting layer provided therebetween. The display device preferably further includes a common layer positioned over the first pixel electrode and the second pixel electrode. The common layer includes a portion overlapping with the active layer and a portion overlapping with the light-emitting layer.
Abstract:
When a base film used in a flexible display panel is bonded to a resin member for fixing the base film that is curved, the base film has creases by an environmental change such as temperature due to difference in linear expansion coefficient before and after a thermal shock. A buffer plate that is thin enough to be bent is provided between the base film used in a flexible display panel and the resin member. With the use of heat dissipation effect and heat equalization effect of the buffer plate, a structure around the panel capable of resisting the environmental change can be provided.
Abstract:
When a base film used in a flexible display panel is bonded to a resin member for fixing the base film that is curved, the base film has creases by an environmental change such as temperature due to difference in linear expansion coefficient before and after a thermal shock. A buffer plate that is thin enough to be bent is provided between the base film used in a flexible display panel and the resin member. With the use of heat dissipation effect and heat equalization effect of the buffer plate, a structure around the panel capable of resisting the environmental change can be provided.
Abstract:
A display device with high design flexibility is provided. The display device includes a display element, a touch sensor, and a transistor between two flexible substrates. An external electrode that supplies a signal to the display element and an external electrode that supplies a signal to the touch sensor are connected from the same surface of one of the substrates.
Abstract:
A sealed structure which has high sealing capability and whose border can be slim is provided. The sealed structure includes a pair of substrates whose respective surfaces face each other with a space therebetween, and a glass layer which is in contact with the substrates, defines a space between the substrates, and has at least one corner portion and side portions in continuity with the corner portion. The width of the corner portion of the glass layer is smaller than or equal to that of the side portion of the same. The sealed structure may comprise a highly reliable light-emitting element including a layer containing a light-emitting organic compound provided between a pair of electrodes.
Abstract:
A sealed structure which has high sealing capability and whose border can be slim is provided. The sealed structure includes a pair of substrates whose respective surfaces face each other with a space therebetween, and a glass layer which is in contact with the substrates, defines a space between the substrates, and has at least one corner portion and side portions in continuity with the corner portion. The width of the corner portion of the glass layer is smaller than or equal to that of the side portion of the same. The sealed structure may comprise a highly reliable light-emitting element including a layer containing a light-emitting organic compound provided between a pair of electrodes.