Abstract:
A novel method for forming projections and depressions is provided. A novel sealing structure is provided. A novel light-emitting device is provided. A first step of forming a film containing at least two kinds of metals having different etching rates over a surface; a second step of heating the film so that the metal having a lower etching rate segregates; a third step of selectively etching the metal having a higher etching rate; and a fourth step of selectively etching the surface using a residue containing the metal having a lower etching rate are included.
Abstract:
A display panel or a display device with high display quality is provided. The display panel includes a light-emitting element, an insulating layer, a protective layer, and a conductive layer. The light-emitting element includes a first electrode, a light-emitting layer, and a second electrode. The light-emitting element emits light to the protective layer side. The insulating layer includes a first opening overlapping with the first electrode. The insulating layer covers an end portion of the first electrode. The light-emitting layer overlaps with the first electrode through the first opening. The second electrode is positioned over the light-emitting layer. The protective layer is over and in contact with the second electrode. The protective layer functions as a protective layer of the light-emitting element. The protective layer includes a second opening overlapping with the insulating layer. The conductive layer is connected to the second electrode through the second opening. The conductive layer functions as an auxiliary wiring of the second electrode.
Abstract:
A sealed body which is sealed with low-melting-point glass and has high airtightness is provided. In the sealed body, at least a wiring layer is provided between two facing substrates, the two substrates are bonded together with the use of a sealing layer containing glass frits as a material, and a metal layer is selectively provided in a region where the wiring layer and the sealing layer overlap. In a laser light irradiation step, the metal layer functions as a laser light reflecting film and suppresses application of excess energy to a sealing member in a region overlapping with the wiring layer.
Abstract:
A novel method for forming projections and depressions is provided. A novel sealing structure is provided. A novel light-emitting device is provided. A first step of forming a film containing at least two kinds of metals having different etching rates over a surface; a second step of heating the film so that the metal having a lower etching rate segregates; a third step of selectively etching the metal having a higher etching rate; and a fourth step of selectively etching the surface using a residue containing the metal having a lower etching rate are included.
Abstract:
A novel method for forming projections and depressions is provided. A novel sealing structure is provided. A novel light-emitting device is provided. A first step of forming a film containing at least two kinds of metals having different etching rates over a surface; a second step of heating the film so that the metal having a lower etching rate segregates; a third step of selectively etching the metal having a higher etching rate; and a fourth step of selectively etching the surface using a residue containing the metal having a lower etching rate are included.
Abstract:
A sealed body in which sealing is uniformly performed is provided. A light-emitting module in which sealing is uniformly performed is provided. A method of manufacturing the sealed body in which sealing is uniformly performed is provided. The sealed body comprises a first substrate alternately provided with a high-reflectivity region with respect to the energy ray and a low-reflectivity region with respect to the energy ray so as to overlap with a sealant surrounding a sealed object, and a second substrate capable of transmitting the energy ray. The sealed object is sealed between the first substrate and the second substrate by heating the sealant with irradiation with the energy ray through the second substrate.
Abstract:
A sealed body which is sealed with low-melting-point glass and has high airtightness is provided. In the sealed body, at least a wiring layer is provided between two facing substrates, the two substrates are bonded together with the use of a sealing layer containing glass frits as a material, and a metal layer is selectively provided in a region where the wiring layer and the sealing layer overlap. In a laser light irradiation step, the metal layer functions as a laser light reflecting film and suppresses application of excess energy to a sealing member in a region overlapping with the wiring layer.
Abstract:
A display panel or a display device with high display quality is provided. The display panel includes a light-emitting element, an insulating layer, a protective layer, and a conductive layer. The light-emitting element includes a first electrode, a light-emitting layer, and a second electrode. The light-emitting element emits light to the protective layer side. The insulating layer includes a first opening overlapping with the first electrode. The insulating layer covers an end portion of the first electrode. The light-emitting layer overlaps with the first electrode through the first opening. The second electrode is positioned over the light-emitting layer. The protective layer is over and in contact with the second electrode. The protective layer functions as a protective layer of the light-emitting element. The protective layer includes a second opening overlapping with the insulating layer. The conductive layer is connected to the second electrode through the second opening. The conductive layer functions as an auxiliary wiring of the second electrode.
Abstract:
A sealed structure with high sealing capability, in which a pair of substrates is attached to each other with a glass layer is provided. The sealed structure has a first and second substrates, a first surface of the first substrate facing a first surface of the second substrate, and the glass layer which is in contact with the first and second substrates, defines a space between the first and second substrates, and is provided along the periphery of the first surface of the first substrate. The first substrate has a corner portion. The area of the first surface of the first substrate is smaller than or equal to that of the first surface of the second substrate. In at least one of respective welded regions between the glass layer and the first or second substrate, the width of the corner portion is larger than that of the side portion.
Abstract:
A light-emitting device in which deterioration of an organic EL element due to impurities such as moisture or oxygen is suppressed is provided. The light-emitting device includes a first substrate and a second substrate facing each other, a light-emitting element provided over the first substrate, a first sealant provided so as to surround the light-emitting element, and a second sealant provided so as to surround the first sealant. One of the first sealant and the second sealant is a glass layer and the other is a resin layer. A dry agent is provided in a first space surrounded by the first sealant, the second sealant, the first substrate, and the second substrate, or in the resin layer. The light-emitting element is included in a second space surrounded by the first sealant, the first substrate, and the second substrate.