Abstract:
A plasma processing system that includes a plasma chamber, an open resonator movably mounted within the plasma chamber, and a detector. The open resonator produces a microwave signal, and the detector detects the microwave signal and measures a mean electron plasma density along a path of the signal within a plasma field. Alternatively, the plasma processing system includes a plasma chamber, a plurality of open resonators provided within the plasma chamber, a plurality of detectors, and a processor. The processor is configured to receive a plurality of mean electron plasma density measurements from the detectors that correspond to locations of the plurality of open resonators.
Abstract:
A plasma processing apparatus including a processing chamber having an upper surface, a first inlet, and a second inlet. The apparatus includes a wall extending from the upper surface into the processing chamber. The wall encircles the first inlet, and the wall has a base end and a terminal end, where the terminal end includes the second inlet. The apparatus includes a first inductive coil provided within the wall and encircling the first inlet, and a second inductive coil provided within the wall and encircling the second inlet. Additionally, the apparatus includes a first magnet array provided within the base end of the wall adjacent the first inlet, and a second magnet array provided within the terminal end of the wall adjacent the second inlet. A method of controlling plasma chemistry within a plasma processing apparatus is provided that includes the steps of providing a first magnetic field about a first injection region and providing a second magnetic field about a second injection region. The method further includes introducing a first process gas into the first injection region via a first inlet, and introducing a second process gas into the second injection region via a second inlet. The chamber has a wall encircling the first inlet, such that the wall has a terminal end including the second inlet.