Abstract:
A biometric feature identification device includes a substrate, an electrode layer, and a switch and trace layer. The electrode layer is arranged at one side of the substrate and has a plurality of electrodes. The switch and trace layer has a plurality of switches and a plurality of traces. The switches are provided to divide the plurality of electrodes sequentially or dynamically into at least one sensing electrode group and a plurality of deflection electrode groups corresponding thereto. Each sensing electrode group corresponds to at least two deflection electrode groups. Each sensing electrode group has at least one electrode for sensing. Each deflection electrode group has a plurality of electrodes for deflection.
Abstract:
A biometric recognition apparatus includes a curved substrate, a sensing electrode layer, and a plurality of selection switches. The sensing electrode layer is arranged on one side of the curved substrate. The sensing electrode layer has a plurality of sensing electrodes. The selection switches sequentially or dynamically select at least one sensing electrode to be one or more than one sensing electrode assemblies.
Abstract:
A high-sensitivity self-capacitance in-cell touch display panel device includes a sensing electrode layer having plural sensing electrodes, a display control circuit, a touch sensing control circuit, and an amplifier with gain greater than zero. The display control circuit is powered by a first power source and connected to a first ground. The touch sensing control circuit is coupled to the sensing electrodes for performing a touch sensing. The touch sensing control circuit is powered by a second power source and connected to a second ground, wherein the first power source and the first ground are different from the second power source and the second ground. The amplifier is connected to the touch sensing control circuit and a common voltage layer. The touch sensing control circuit applies a sensing signal sensed by at least one sensing electrode to the amplifier for being amplified and applied to the common voltage layer.
Abstract:
A biometric identification device having sensing electrodes with multiple connection selections includes a plurality of sensing electrodes disposed on a surface of a substrate, each sensing electrode corresponding to a data readout selector and at least one reference voltage selector. The data readout selector has a first terminal connected to the sensing electrode and a second terminal connected to a corresponding data readout select trace. The reference voltage selector has a first terminal connected to the first terminal of the data readout selector and a second terminal connected to a corresponding reference voltage select trace. A control unit divides the sensing electrodes into at least one sensing area and at least one non-sensing area by means of the data readout selectors, the data readout select traces, the reference voltage selectors, and the reference voltage select traces.
Abstract:
An electrophoresis display with improved micro partition structure includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, and an electrophoresis layer. The driving circuit layer, the control electrode layer, and the electrophoresis layer are sequentially arranged on the second face. The electrophoresis layer includes a micro partition structure arranged on the control substrate and made from polymer material. The micro partition structure includes a plurality of partition walls to define chambers for accommodating a colloidal solution. The height of the partition wall of the micro partition structure is smaller than 25 um.
Abstract:
An electrophoresis display with gapped micro partition structure includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, and an electrophoresis layer. The driving circuit layer, the control electrode layer, and the electrophoresis layer are sequentially arranged on the second face. The electrophoresis layer includes a micro partition structure arranged on the control substrate and made from polymer material. The micro partition structure includes a plurality of partition walls to define chambers for accommodating a colloidal solution. Two adjacent partition walls have a gap therebetween and used as yielding space when the electrophoresis display is bent. The area of the gap is not larger than 50% of the area of the partition wall. Or the length of the gap is not longer than 50% of the length of the partition wall.
Abstract:
An electrophoresis display with high aperture ratio includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, an electrophoresis layer, and an opposite substrate. The driving circuit layer includes a plurality of thin film transistors (TFT), a plurality of gate lines, and plurality of data lines. Each of the gate line is connected to the gates of the TFTs and each of the data lines is connected to the sources or the drains of the TFTs. The sum of the data line width and the gate line width is not larger than 10 μm. The aperture ratio of the electrophoresis display, viewed from the first face of the control substrate and toward a display area of the electrophoresis display, is not less than 80%.
Abstract:
A color electrophoresis display with micro partition structure includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, and an electrophoresis layer. The driving circuit layer, the control electrode layer, and the electrophoresis layer are sequentially arranged on the second face. The electrophoresis layer includes a micro partition structure arranged on the control substrate and made from polymer material. The micro partition structure includes a plurality of partition walls to define chambers for accommodating a colloidal solution. The electrophoresis display further includes a color filter layer arranged on bottom of the chamber. The colloidal solution contains charged black particles and/or charged white particles.
Abstract:
An electrophoresis display with embedded touch sensing includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, an electrophoresis layer with electrophoresis material, and a touch with display driver (TDDI) electrically connected to data lines and common voltage lines. When the electrophoresis display performs touch sensing operation, the TDDI electrically connected plurality ones of the data lines into single a touch transmitting electrode or a single touch receiving electrode, and the TDDI electrically connected plurality ones of the common voltage lines into a single touch receiving electrode or a single touch transmitting electrode. The viewing face of the electrophoresis display is on the first face of the electrophoresis display.
Abstract:
A protection film structure with composite hardening layer includes a transparent substrate and at least two tiling layers. The at least two tiling layers includes a first tiling layer, which is arranged on one face of the transparent substrate and includes a plurality of first tiling islands with a gap therebetween, and a second tiling layer, which is arranged on one face of the first tiling layer away from the transparent substrate and includes a plurality of second tiling islands with a gap therebetween. At least one composite hardening layer is arranged between the adjacent tiling layers, and each composite hardening layer includes a first hardening layer and a second hardening layer made from different materials and the material hardness of the first hardening layer is larger than the material hardness of the second hardening layer.