摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Banks and lenders can use CSoW/CSoSW to determine who to lend to and who to deny credit to, as well as for pricing loans and other products in a dynamic way. Banks and lenders can also determine which customers should be retained, as well as identify loans which are likely to default.
摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Managers of investment vehicles, such as mutual fund managers, can use CSoW/CSoSW as one of the parameters to be considered when picking stocks to buy, sell, or short. Investment managers can also use CSoW/CSoSW to predict which stocks in their portfolio are likely to suffer a price fall.
摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Online marketplaces that allow small businesses to advertise their services can use this CSoW/CSoSW modeling approach to provide a rating that gives an indication of the business prospects of the vendors listed on their sites. Further, such marketplaces can combine this information with their own internal analytics to provide a single holistic rating.
摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Research analysts can use CSoW/CSoSW to provide a comprehensive and robust indication of the business prospects of a rated company.
摘要:
Share of Wallet (“SOW”) is a modeling approach that utilizes various data sources to provide outputs that describe a consumers spending capability, tradeline history including balance transfers, and balance information. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new applicant evaluation, and customer management across the lifecycle. A SOW score focusing on a consumer's spending capability can be used in the same manner as a credit bureau score.
摘要:
Share of Wallet (“SoW”) is a modeling approach that utilizes various data sources to provide outputs that describe a consumer's spending capability, tradeline history including balance transfers, and balance information. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new applicant evaluation, and customer management across the lifecycle. In addition to credit card companies, SoW outputs may be useful to companies issuing, for example: private label cards, life insurance, on-line brokerages, mutual funds, car sales/leases, hospitals, and home equity lines of credit or loans. “Best customer” models can correlate SoW outputs with various customer groups. A SoW score focusing on a consumer's spending capacity can be used in the same manner as a credit bureau score.
摘要:
Time series consumer spending data, point-in-time balance information, internal customer financial data and consumer panel information provides input to a model for consumer spend behavior on plastic instruments or other financial accounts, from which approximations of spending ability may be reliably identified and utilized to promote additional consumer spending.
摘要:
A method for predicting sensor output values of a machine sensor monitoring system includes providing a set of input sensor data X and a set of output sensor data Y for a plurality of sensors the monitor the performance of a machine, learning a functional relationship that maps the input sensor data to the output sensor data by maximizing a logarithm of a marginalized conditional probability function P(Y|X) where a dependence of the output sensor data Y with respect to unknown hidden machine inputs u has been marginalized, providing another set of input sensor data X′, and calculating expected values of the output sensor data Y′ using the input sensor data X′ and the marginalized conditional probability function P(Y|X′), where the calculated expectation values reflect the dependence of the output sensor data Y″ with respect to the unknown hidden machine inputs u.
摘要:
A method and apparatus for detecting faults in power plant equipment is discloses using sensor confidence and an improved method of identifying the normal operating range of the power generation equipment as measured by those sensors. A confidence is assigned to a sensor in proportion to the residue associated with that sensor. If the sensor has high residue, a small confidence is assigned to the sensor. If a sensor has a low residue, a high confidence is assigned to that sensor, and appropriate weighting of that sensor with other sensors is provided. A feature space trajectory (FST) method is used to model the normal operating range curve distribution of power generation equipment characteristics. Such an FST method is illustratively used in conjunction with a minimum spanning tree (MST) method to identify a plurality of nodes and to then connect those with line segments that approximate a curve.
摘要:
A method for identifying a potential fault in a system includes obtaining a set of training data. A first kernel is selected from a library of two or more kernels and the first kernel is added to a regression network. A next kernel is selected from the library of two or more kernels and the next kernel is added to the regression network. The regression network is refined. A potential fault is identified in the system using the refined regression network.