ARM ANGLE INTERVAL SOLVING METHOD AND ROBOTIC ARM USING THE SAME

    公开(公告)号:US20240001546A1

    公开(公告)日:2024-01-04

    申请号:US18369225

    申请日:2023-09-18

    CPC classification number: B25J9/163 B25J9/1653

    Abstract: A robotic arm angle interval inverse solving method and a robotic arm using the same are provided. The method includes: obtaining a joint angle calculation model and a differential relationship model of a target joint of the robotic arm; obtaining extreme arm angles corresponding to a joint angle of the differential relationship model at extreme values based on the differential relationship model; obtaining a joint arm angle interval corresponding to the target joint based on the extreme arm angle and the joint angle calculation model; and obtaining a target arm angle interval corresponding to the robotic arm based on the joint arm angle interval corresponding to the target joint of the robotic arm. In comparison with the existing method to solve the arm angle interval of the robotic arm, a more accurate arm angle interval can be obtained.

    GAIT PLANNING METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230278212A1

    公开(公告)日:2023-09-07

    申请号:US18091292

    申请日:2022-12-29

    CPC classification number: B25J9/1664 B25J9/1602 B25J9/1653 B25J9/163

    Abstract: A gait planning method for a robot includes: constructing a first phase variable of a gait planning of the robot, wherein the first phase variable is a function of two position components of a torso of the robot on a horizontal plane; constructing a second phase variable based on the first phase variable, wherein the second phase variable is a function of the first phase variable, and a slope of the second phase variable is smaller than a slope of the first phase variable when a foot of a swing leg of the robot starts to touch a support surface; and performing the gait planning on the foot of the swing leg using the second phase variable to obtain a planned trajectory of the foot of the swing leg.

    Robot balance control method, computer-readable storage medium and robot

    公开(公告)号:US11604466B2

    公开(公告)日:2023-03-14

    申请号:US17120232

    申请日:2020-12-13

    Abstract: A robot balance control method includes: obtaining force information associated with a left foot and a right foot of the robot; calculating a zero moment point of a center of mass (COM) of a body of the robot based on the force information; calculating a first position offset and a second position offset of the robot according to the zero moment point of the COM of the body; updating a position trajectory of the robot according to the first position offset and the second offset to obtain an updated position of the COM of the body; performing inverse kinematics analysis on the updated position of the COM of the body to obtain joint angles of the left leg and the right leg of the robot; and controlling the robot to move according to the joint angles.

    CONTROL METHOD FOR ROBOT, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20220203522A1

    公开(公告)日:2022-06-30

    申请号:US17561629

    申请日:2021-12-23

    Abstract: A robot control method includes: determining a planned capture point and a measured capture point of the robot so as to calculate a capture point error of the robot; obtaining positions of a left foot and a right foot of the robot, and a planned zero moment point (ZMP) of the robot so as to calculate desired support forces of the left foot and the right foot; calculating desired torques of the left foot and the right foot according to the capture point error, the desired support forces of the left foot and the right foot; obtaining measured torques of the left foot and the right foot so as to calculate desired poses of the left foot and the right foot; and controlling the robot to walk according to the desired poses of the left foot and the desired pose of the right foot.

    CONTROL METHOD FOR ROBOT, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20220203521A1

    公开(公告)日:2022-06-30

    申请号:US17561609

    申请日:2021-12-23

    Abstract: A control method for a robot includes: determining a desired zero moment point (ZMP) of the robot; obtaining a position of a left foot and a position of a right foot of the robot, and calculating desired support forces of the left foot and the right foot according to the desired ZMP, the positions of the left foot and the right foot; obtaining measured support forces of the left foot and the right foot, and calculating an amount of change in length of the left leg and an amount of change in length of the right leg according to the desired support forces of the left foot and the right foot, the measured support forces of the left foot and the right foot; and controlling the robot to walk according to the amount of change in length of the left leg and the right leg.

    Biped robot gait control method and biped robot

    公开(公告)号:US11230001B2

    公开(公告)日:2022-01-25

    申请号:US16572637

    申请日:2019-09-17

    Abstract: There are a biped robot gait control method and a biped robot, where the method includes: obtaining six-dimensional force information, and determining a motion state of two legs of the biped robot; calculating a ZMP position of each of two legs of the biped robot; determining a ZMP expected value of each of the two legs in real time; obtaining a compensation angle of an ankle joint of each of the two legs of the biped robot by inputting the ZMP position, a change rate of the ZMP position, the ZMP expected value, and a change rate of the ZMP expected value to an ankle joint smoothing controller so as to perform a close-loop ZMP tracking control on each of the two legs; adjusting a current angle of the ankle joint of each of the two legs of the biped robot in real time; and repeating the forgoing steps.

Patent Agency Ranking