摘要:
A light valve unit may include a first conductive layer and a second conductive layer disposed on opposite sides of each other with respect to a plurality of cells in which at least some of the cells include a first material and a second material. The first material may have a lower light transmissivity property than the second material and a position of the first material within a corresponding cell may be changeable responsive to application of an electric field between the first and second conductive layers. The second conductive layer may include at least two electrodes and a gap defined between the two electrodes. A portion of the light valve unit adjacent to the gap may be configured to have a transmissivity that is substantially less than transmissivity of a portion of the light valve unit adjacent to cells across which the electric field is applied, but greater than or equal to transmissivity of a portion of the light valve unit adjacent to cells across which the electric field is not applied.
摘要:
Electrowetting display devices are presented. The electrowetting display includes a first substrate and an opposing second substrate with a polar fluid layer and a color non-polar fluid layer interposed therebetween. A first transparent electrode is disposed on the first substrate. A second electrode is disposed on the second substrate. A hydrophilic partition structure is disposed on the second substrate, thereby defining a plurality of sub-pixels. The color electrowetting display further includes an array of color pixel regions. Each pixel region consists of a set of primary color sub-pixel. Each color sub-pixel corresponds to one of different color non-polar fluid layers, and each of the different color non-polar fluid layers is isolated from each other. The colors of non-polar fluid layer in the neighboring sub-pixels are different.
摘要:
An electro-wetting display panel including a first substrate, an insulator layer, a second substrate, partitioning structures, and electro-wetting display mediums. The first substrate has a plurality of first electrodes. The insulator layer is disposed on the first substrate to cover the first electrodes. The second substrate located above the first substrate and has a plurality of second electrodes. The partitioning structures are disposed on the insulator layer and each defines a pixel region, respectively. At least one of the partitioning structures has a flow channel surrounding the pixel regions, and the flow channel is connected to one of the pixel regions correspondingly. The electro-wetting display mediums are disposed within the pixel regions and the flow channels. When the electro-wetting display mediums are driven by the electric charge between the first electrodes and the second electrodes, the electro-wetting display mediums move between the pixel regions and the flow channels.
摘要:
A display and fabricating method thereof is provided. The display includes a first substrate, a second substrate, a hydrophobic layer, a nonpolar liquid layer, a hydrophilic separator, a polar liquid layer, and a protruding spacer. The first and second substrates respectively include an opposing surface, and are disposed in a way that the opposing surfaces are face-to-face opposing to each other. The hydrophobic layer overlies the opposing surface of the second substrate. The nonpolar liquid layer overlies the hydrophobic layer. The hydrophilic separator overlies the hydrophobic layer and surrounds the nonpolar liquid layer. The polar liquid layer overlies the nonpolar liquid layer. The protruding spacer is disposed between the hydrophilic separator and the first substrate.
摘要:
The invention relates to optically compensated bend (OCB) mode liquid crystal display devices and fabrication methods thereof. The OCB mode liquid crystal display includes a first substrate, a second substrate and a liquid crystal layer interposed therebetween. A first alignment layer is disposed on the first substrate, and a second alignment layer is disposed on a second region of the first substrate exposing the first alignment layer on a first region. A third alignment is disposed on the second substrate. Alignment orientations of liquid crystal molecules on the first and second alignment layers are different. When an appropriate voltage is applied to the OCB mode liquid crystal display, a splay to bend transition boundary is formed between the first and the second regions.