Abstract:
A sensing device can detect material depth, liquid-level, and temperature. The sensing device has a probe, a control module, a volume sensing module, a thermal sensing module, an output module, and a power module. The probe has two material electrodes connected to the volume sensing module and a thermal electrode connected to the thermal sensing module. A rated voltage is applied at the material electrodes based on radio frequency admittance. A current deviation of the material electrodes is obtained by the volume sensing module, and calculated via the control module by material characteristics to obtain a correct storage amount of material. A temperature at each material depth is correctly detected by the thermal electrode. Steel cable is used as the material of the material electrodes of the probe to detect material depth or liquid level with high impact resistant ability.
Abstract:
A pattern printing system and data processing method thereof are disclosed, which are suitable for printing patterns on printed circuit boards or data format rearrangement printing used in displays. The pattern printing method includes a process for interpreting scription data into matrix data, a procedure for modulating the print head resolution and the printing resolution, a procedure for interpreting and transmitting data commands, a procedure for rearranging memory data, and a procedure for firing data synchronously so as to achieve high-resolution printing and to continuously modulate any print data.
Abstract:
A turbine vibrator has a housing, an eccentric rotor mounted in an air chamber of the housing and two covers mounted respectively in two mounting recesses of the housing. Two threaded walls defined respectively around the mounting recesses of the housing have same threaded directions. Therefore, the mounting recesses, the air chamber and the other mounting recess are formed sequentially so axes of the mounting recesses and the air chamber are disposed along a same line. Manufacturing processes of the housing is reduced and shearing forces applied to the shafts of the eccentric rotor are reduced so the turbine vibrator has a prolonged useful life. Moreover, as a rotating direction of the eccentric rotor and the fastening directions of the covers are the same, when the turbine vibrator operates, the covers tighten against the housing. The first and second covers do not drop from the housing.
Abstract:
A fabrication method of a radio frequency identification (RFID) antenna coil is provided. First, a substrate is processed by a surface modified procedure, to form a self-assembly membranes (SAMs) on a surface of the substrate. A catalyst is sprayed on the SAMs of the substrate according to patterning. After that, the first electroless plating procedure is first carried out for the substrate to generate a magnetic metal layer corresponding to the wiring pattern on the catalyst, and the second electroless plating procedure is then carried out for the substrate to generate the metal layer on the magnetic metal layer.
Abstract:
A supply system capable of providing a working fluid is provided. The supply system includes an access device, a first energizer, a second energizer, a third energizer and an output device. The access device utilized to access the working fluid includes a connecting port. The first energizer provides a first energy to energize the working fluid, thereby expelling the bubbles from the working fluid. The second energizer provides a second energy to energize the working fluid received in the access device, thereby expelling the working fluid through the connecting port of the access device. The output device is connected to the access device, thereby receiving and outputting the working fluid. The third energizer provides a third energy to heat the working fluid passing through the access device and the output device.
Abstract:
Atmospheric plasma inkjet printing apparatus and methods for fabricating color filters using the same. The atmosphere plasma inkjet printing apparatus includes a nozzle plate having a first column of nozzles and a second column of nozzles. An inkjet printhead module corresponds to the first column of nozzles. An atmospheric plasma module is corresponds to the second column of nozzles.
Abstract:
Methods for repairing patterned structure of electronic devices. A first substrate with a patterned structure thereon is provided, wherein the patterned structure includes at least one defect. The defect corresponds to a defect region while the patterned structure corresponds to a main region. A first surface treatment is performed on the defect region such that the surface characteristics on the defect region are different from those on the main region. The defect region is repaired by inkjet printing. A second surface treatment is performed on the defect region such that the surface characteristics on the defect region are the same as those on the main region.
Abstract:
A thin-film transistor and method for fabricating a thin-film transistor is disclosed. In the method, a controlled micro-line is formed by inkjet printing in combination with the coffee ring effect. The micro-line may be a semiconductor or an insulator. A high-current thin-film transistor utilizing the micro-line of the coffee ring as a channel is formed. A high current TFT can be achieved by utilizing the micro-line structure of the coffee ring ridge as a TFT channel.
Abstract:
A method for fabricating a double-sided or multi-layer printed circuit board (PCB) by ink-jet printing that includes providing a substrate, forming a first self-assembly membrane (SAM) on at least one side of the substrate, forming a non-adhesive membrane on the first SAM, forming at least one microhole in the substrate, forming a second SAM on a surface of the microhole, providing catalyst particles on the at least one side of the substrate and on the surface of the microhole, and forming a catalyst circuit pattern on the substrate.
Abstract:
An apparatus for metal plating on a substrate with through-holes includes a chamber that the substrate is disposed inside the chamber to be divided into two sections. A pressure generator and a pressure controller are connected to this and correspond to two sides of the substrate respectively. The pressure generator is used for pumping a electrolyte flowed parallel to the surface of the substrate into the chamber. The pressure controller is used for channeling the electrolyte off the chamber and controlling the pressure differences between the two sides of the substrate. So that the electrolyte flowed parallel to the surface of the substrate is pumped by the pressure generator and it passes several through-holes to control the thickness of metal plating on the.substrate and inner walls of the through-holes.