Abstract:
A spark plug having a metal shell, an insulator, a center electrode, a ground electrode, and a multi-layer sparking component. The multi-layer sparking component is attached at a firing end of the ground electrode and includes a thin precious metal layer formed overtop a base metal layer and, according to some embodiments, overhangs the end of the ground electrode. The precious metal and base metal layers may be pre-manufactured together as a bi-metal ribbon, sheet or laminate before the multi-layer sparking component is attached to the ground electrode.
Abstract:
An electrode material that may be used in spark plugs and other ignition devices for igniting an air/fuel mixture in an engine. The electrode material has a metal ceramic composite structure and includes a particulate component embedded or dispersed within a matrix component such that the electrode material has a multi-phase microstructure. In an exemplary embodiment, the matrix component includes platinum (Pt) and one or more additive metals like nickel (Ni) or palladium (Pd), and the particulate component includes an electrically conductive ceramic, such as titanium diboride (TiB2). A liquid phase or a solid phase sintering process may be used, depending on the particular constituency of the electrode material.
Abstract:
A spark plug (20) for igniting a mixture of fuel and air of an internal combustion engine comprises a center electrode (22) and a ground electrode (24). At least one of the electrodes (22, 24) includes a body portion (28, 30) formed of thermally conductive material and a firing tip (32, 34) disposed on the body portion (28, 30). The firing tip (32, 34) includes a ceramic material, providing an exposed firing surface (36, 38). The ceramic material is an electrically conductive, monolithic ceramic material. The ceramic material of the firing tip (32, 34) includes at least one perovskite structure and/or at least one a spinel structure.
Abstract:
A system and method for detecting arc formation in a corona discharge ignition system is provided. The system includes a driver circuit conveying energy oscillating at a resonant frequency; a corona igniter for receiving the energy and providing a corona discharge; and a frequency monitor for identifying a variation in an oscillation period of the resonant frequency, wherein the variation in the oscillation period indicates the onset of arc formation. The method includes supplying the energy to the driver circuit and to the corona igniter; obtaining the resonant frequency of the energy in the oscillating driver circuit; and identifying a variation in the oscillation period of the resonant frequency.
Abstract:
A lighting assembly for a vehicle, and in particular, an interior lighting assembly having a reduced profile using solid state illuminators is provided along with a method of construction thereof. The assembly includes a housing; a lens attached to the housing; a printed circuit board disposed between the housing and the lens; at least one light source attached in operable electrical communication to the printed circuit board; and a light blade. The light blade has opposite sides disposed between the printed circuit board and the lens. One of the sides has a first configuration of optics and the other of the sides has a second configuration of optics, wherein the first and second configurations of optics are different from one another.
Abstract:
A method of manufacturing an electrode material for use in spark plugs and other ignition devices. The electrode material may be manufactured into a desirable form by hot-forming a layered structure that includes a ruthenium-based material core, an iridium-based interlayer disposed over an exterior surface of the ruthenium-based material core, and a nickel-based cladding disposed over an exterior surface of the iridium-based material interlayer. The elongated layered wire produced by the hot-forming then has its nickel-based cladding removed to derive an elongated electrode material wire that includes the ruthenium-based material core encased in the iridium-based material. The elongated electrode material wire can be used to make many different spark plug/ignition device components.
Abstract:
A spark plug has a metal shell, an insulator, a center electrode, and a ground electrode. One or more firing tips can be attached to the center electrode, to the ground electrode, or to both electrodes. The metal shell and ground electrode are attached together by way of one or more laser keyhole welds at an interface of the shell and electrode. Before the laser keyhole welds, resistance welding can be executed for a temporary attachment.
Abstract:
A spark plug has a shell, an insulator, a center electrode, a ground electrode, and a firing pad. The firing pad is made of a precious metal material and is attached to the ground electrode. The firing pad has a side surface at a peripheral edge that can be flush or nearly flush with a free end surface of the ground electrode. This construction can help improve ignitability and flame kernel growth of the spark plug during a sparking event, and can provide better thermal management at the attached ground electrode and firing pad.
Abstract:
A corona igniter 20 with improved temperature control at the firing end is provided. The corona igniter 20 comprises a central electrode 24 include a core material 30, such as copper, surrounded by a clad material 32, such as nickel. The core material 30 extends longitudinally between an electrode terminal end 34 and an electrode firing end 36. The core material 30 is disposed at the electrode terminal end 34 and has a core length Ic equal to at least 90% of an electrode length Ie of the central electrode 24. At least 97% of the core length Ic is surrounded by an insulator 26. The electrode diameter is increased, such that a clad thickness tcl of the central electrode 24 is equal to at least 5% of an insulator thickness ti, and a core diameter Dc is equal to at least 30% of the insulator thickness ti.
Abstract:
A corona igniter (20) includes a metal shell (32) with a corona reducing lip (38) spaced from an insulator (26) and being free of sharp edges (40) to prevent arcing (42) in a rollover region and concentrate the electrical field at an electrode firing end (48). The corona reducing lip (38) includes lip outer surfaces (88) being round, convex, concave, or curving continuously with smooth transitions (90) therebetween. The corona reducing lip (38) includes lip outer surfaces (88) presenting spherical lip radii (r1) being at least 0.004 inches. The corona igniter (20) also includes shell inner surfaces (104) and insulator outer surfaces (75) facing one another being free of sharp edges (40).