Method for testing and extracting paleo-tectonic geostress based on rock core

    公开(公告)号:US11372121B1

    公开(公告)日:2022-06-28

    申请号:US17581101

    申请日:2022-01-21

    Abstract: A method for testing and extracting paleo-tectonic geostress based on rock core, including: selecting rock cores in different tectonic periods; preparing standard cylindrical samples from the rock cores in a specific orientation; subjecting the samples to an acoustic emission test to test paleo-stresses of multiple tectonic periods and obtain paleo-tectonic stress data sequence; based on a correlation analysis and an Euclidean distance of the stress data sequence, stripping and extracting multi-level Kaiser stress points of the acoustic emission of rock cores from different formations, so as to calculate and evaluate the ground stress of an evaluated formation in an evaluated paleo-tectonic period.

    SAFETY PIPE LOOP AND METHOD FOR STRAIN MONITORING OF MOUNTAINOUS PIPELINES

    公开(公告)号:US20220170730A1

    公开(公告)日:2022-06-02

    申请号:US17229940

    申请日:2021-04-14

    Abstract: The present disclosure discloses a safety pipe loop and method for strain monitoring of mountainous pipelines. The safety pipe loop may include a plurality of magnetic test detectors and a protective shell for protecting the plurality of magnetic test detectors. The number of the plurality of magnetic test detectors may be set to 4n, n is an integer number greater than or equal to 1. An angle between any two adjacent detectors of the plurality of magnetic test detectors may be 180°/2n. At least two of the plurality of magnetic test detectors may be connected in parallel through a data transmission line and output data through a data transmission interface. An outer layer of the protective shell may include non-magnetic hard alloy, and an inner layer of the protective shell may include non-metallic materials.

    Rotary downhole cavitation generator

    公开(公告)号:US11319789B2

    公开(公告)日:2022-05-03

    申请号:US17360450

    申请日:2021-06-28

    Abstract: The present disclosure discloses a rotary downhole cavitation generator, including an upper connector, a lower connector, and a casing. Said casing is internally provided with a transmission shaft, an alignment bearing, a drive assembly, a thrust bearing, a rotating disk, a rectification cylinder, an inner sleeve, and an outer sleeve. Said transmission shaft is provided with a deep hole, a diversion hole radially communicating with said deep hole, and a diversion channel radially communicating with said deep hole. Said alignment bearing and said drive assembly are sleeved on an upper end of said transmission shaft, and said rotating disk, said inner sleeve, and said thrust bearing are sleeved on a lower end of said transmission shaft. Said rectification cylinder and said outer sleeve are mounted on an inner wall of said casing, and said upper connector and said lower connector are respectively connected to both ends of said casing.

    Preparation method of amphoteric two-dimensional nanosheet

    公开(公告)号:US11279621B1

    公开(公告)日:2022-03-22

    申请号:US17408511

    申请日:2021-08-23

    Abstract: An amphoteric two-dimensional nanosheet and a preparation method thereof are provided. The amphoteric two-dimensional nanosheet is prepared by the following steps: uniformly dispersing few-layered graphene oxide into toluene and then adding alkylamine coupling agent to a mixture of the few-layered graphite oxide and the toluene for reaction; amine terminated graphite oxide dispersion that has been prepared is fully dispersed in toluene-dimethylformamide mixed solvent, and then, alkyl glycidyl ether is added into the above solution for reaction, so as to obtain the amphoteric two-dimensional nanosheet. The amphoteric two-dimensional nanosheet of the present disclosure can be prepared by modifying two-dimensional graphite oxide, to spontaneously form water-in-oil Pickering emulsion at an oil-water interface, compared with emulsion of conventional surfactants, the present disclosure can effectively stabilize the waterflooding front, improve the sweep volume of waterflooding, have a simple synthesis process for convenient large-scale production, and be widely used in waterflooding development reservoirs.

    Automatic cleaning device for suction port of electric submersible pump

    公开(公告)号:US11187250B2

    公开(公告)日:2021-11-30

    申请号:US17344952

    申请日:2021-06-11

    Abstract: The present invention relates to an automatic cleaning device for suction port of electric submersible pump. The pipe string joint is connected between the oil pipe and the electric submersible pump. A plurality of oil drain passage inlets, steel balls, return springs, sealing plugs and oil drain passage outlets are evenly distributed in circumferential direction of a boss. The upper end of the connecting pipe is connected with the outlet of the oil drain passage, and the lower end is connected with the nozzle. The retaining ring secures the connecting pipe on the housing of the electric submersible pump. A high-pressure fluid ejected from the nozzle directly acts on the suction port of the electric submersible pump. The present invention can automatically clean the suction port of the electric submersible pump by relying on the pressure difference between the outlet and the suction port of the electric submersible pump.

    Intelligent water-control and gas-diversion particle for water-gas reservoirs and preparation method thereof

    公开(公告)号:US11186766B2

    公开(公告)日:2021-11-30

    申请号:US16964604

    申请日:2019-12-12

    Abstract: The invention discloses an intelligent water-control and gas-diversion particle for water-gas reservoirs and preparation method and application thereof, comprising core support layer with barbs, expandable water shutoff layer, water discharge and gas diversion layer, migration protection layer and suspension lift layer; the expandable water shutoff layer is wrapped on the outer surface of the core support layer and the root of the barb; the water discharge and gas diversion layer is wrapped on the outer surfaces of the expandable water shutoff layer and the barbs; the migration protection layer is wrapped on the outer surface of the water discharge and gas diversion layer; the outer surface of the migration protection layer forms a sphere; the suspension lift layer is wrapped on the outer surface of the migration protection layer.

    Carbonate reservoir filtration-loss self-reducing acid

    公开(公告)号:US11174425B2

    公开(公告)日:2021-11-16

    申请号:US16910807

    申请日:2020-06-24

    Abstract: The present invention relates to a carbonate reservoir filtration-loss self-reducing acid fracturing method. The carbonate reservoir filtration-loss self-reducing acid fracturing method comprises the steps: (1) calculating a fracture pressure and a fracture extension pressure of a reconstructed reservoir; (2) injecting an agent A into a stratum under a pressure higher than the stratum fracture pressure, so that fractures are generated on the stratum; (3) injecting an agent B into the stratum under a pressure higher than the stratum fracture pressure, such that the agent B extends the fractures and communicates with a natural fracture net; (4) pumping an acid liquor system agent C with a high etching power into the stratum under a pressure higher than the extension pressure but lower than the fracture pressure to improve the conductivity of the fractures; (5) injecting a displacing liquid agent D under a pressure lower than the stratum fracture pressure to jack acid liquor in a well casing into the stratum; and (6) shutting down a well and performing flow-back. The agent A is a gel acid or VES acid, the agent B is a filtration-loss self-reducing gel acid or filtration-loss self-reducing VES acid, the agent C is closed acid, and the agent D is a displacing liquid. According to the method of the present invention, precipitation type solid filter cakes are formed on wall surfaces of the fractures by utilizing a filtration-loss self-reducing system, so as to perform temporary blocking to reduce the filtration loss. The technology is simple with easy injection, and the filtration-reducing agent is easy to disperse and flow back, and the method is safe and environment-friendly.

    Intelligent water-control and gas-diversion particle for water-gas reservoirs and preparation method thereof

    公开(公告)号:US20210301196A1

    公开(公告)日:2021-09-30

    申请号:US16964604

    申请日:2019-12-12

    Abstract: The invention discloses an intelligent water-control and gas-diversion particle for water-gas reservoirs and preparation method and application thereof, comprising core support layer with barbs, expandable water shutoff layer, water discharge and gas diversion layer, migration protection layer and suspension lift layer; the expandable water shutoff layer is wrapped on the outer surface of the core support layer and the root of the barb; the water discharge and gas diversion layer is wrapped on the outer surfaces of the expandable water shutoff layer and the barbs; the migration protection layer is wrapped on the outer surface of the water discharge and gas diversion layer; the outer surface of the migration protection layer forms a sphere; the suspension lift layer is wrapped on the outer surface of the migration protection layer.

    INSPECTION SYSTEM AND METHOD WITH VARIABLE-DIAMETER TRAVELING ROBOT FOR INSPECTION OF NATURAL GAS PIPELINE

    公开(公告)号:US20210278349A1

    公开(公告)日:2021-09-09

    申请号:US17025668

    申请日:2020-09-18

    Abstract: An inspection system and method with a variable-diameter traveling robot for inspection of a natural gas pipeline. The inspection system includes a pipeline inspection robot, a cable reel, a hydraulic pump and an information acquisition control terminal. The pipeline inspection robot includes an electronic cabin and a traveling mechanism. The electronic cabin includes a first digital camera, a second digital camera, a first digital camera mounting plate, a second digital camera mounting plate, a drum, a printed circuit board, a magnetic flux leakage probe, and a backup battery. The traveling mechanism includes a first traveling part, a second traveling part, an inner ratchet, an inner ratchet base, a slider, a long shaft, a hydraulic cylinder, and a hydraulic pipe. The cable reel includes a power line, a conversion module, and a communication line. The information acquisition control terminal is a mobile terminal having an analysis module and a control module.

    Optimization method for high-efficiently placing proppants in hydraulic fracturing treatment

    公开(公告)号:US20210270114A1

    公开(公告)日:2021-09-02

    申请号:US17324125

    申请日:2021-05-19

    Abstract: An optimization method for high-efficiently placing proppants in a hydraulic fracturing treatment includes steps of: (1) constructing a rock deformation governing equation during a fracturing process, and constructing a material balance equation of flowing of fracturing fluid and transport of the proppant; (2) constructing a model for representing a pumped volume fraction of the proppant; (3) calculating with given parameters, and obtaining corresponding fracture geometric size and volumetric concentration distribution of the proppant; (4) calculating a placement efficiency of the proppant for each set of parameters; (5) calculating an average placement efficiency of the proppant under different parameters; (6) selecting optimized parameters; (7) substituting the optimized parameters into the models constructed in the steps (1) and (2), calculating the placement efficiency of the proppant as step (4), and verifying whether the placement efficiency is maximum, which means the optimized parameters are optimal.

Patent Agency Ranking