Abstract:
Presented is an underground cable laying apparatus that leaves virtually no visible scar in the turf under which cable, wire, line, hose, etc. is laid. The apparatus utilizes a pair of angularly displaced turf slicing wheels to slice and separate the turf forming a slit into which cable may be laid. A cable guide tube and roller properly place the cable within the slit. A pair of turf closure wheels close the slit in close proximity to the release point of the cable to ensure proper placement of the cable. The slit in the turf is gently and completely closed over the cable, leaving virtually no visible scar within the turf to upset the aesthetic beauty of a lawn. Further, the configuration and rolling action of the turf slicing wheels ensures that other underground cables will not be damaged if inadvertently encountered.
Abstract:
A method and apparatus employing an axially elongated ground piercing tool for forming an in-ground tunnel under a surface structure with forward axial movement of the tool in the ground under the structure with a pipe carried by the tool for depositing in the tunnel after a removal of a tip of the tool and a rearward pulling of the remainder of the tool from the tunnel.
Abstract:
Presented is an underground cable laying apparatus that leaves virtually no visible scar in the turf under which cable, wire, line, hose, etc. is laid. The apparatus utilizes a pair of angularly displaced turf slicing wheels to slice and separate the turf forming a slit into which cable may be laid. A cable guide tube and roller properly place the cable within the slit. A pair of turf closure wheels close the slit in close proximity to the release point of the cable to ensure proper placement of the cable. The slit in the turf is gently and completely closed over the cable, leaving virtually no visible scar within the turf to upset the aesthetic beauty of a lawn. Further, the configuration and rolling action of the turf slicing wheels ensures that other underground cables will not be damaged if inadvertently encountered.
Abstract:
Presented is an underground cable laying apparatus that leaves virtually no visible scar in the turf under which cable, wire, line, hose, etc. is laid. The apparatus utilizes a pair of angularly displaced turf slicing wheels to slice and separate the turf forming a slit into which cable may be laid. A cable guide tube and roller properly place the cable within the slit. A pair of turf closure wheels close the slit in close proximity to the release point of the cable to ensure proper placement of the cable. The slit in the turf is gently and completely closed over the cable, leaving virtually no visible scar within the turf to upset the aesthetic beauty of a lawn. Further, the configuration and rolling action of the turf slicing wheels ensures that other underground cables will not be damaged if inadvertently encountered.
Abstract:
A tailer for transporting coiled pipe and assisting in the unwinding of the pipe for laying in a trench. A support cradle contacts the outer surface of the coil, thereby obviating the need for a reel. The cradle includes self-centering support rollers upon which the coil freely rotates during the pipe laying operation. Horizontal rollers are provided as a retainer for engaging the inner surface of the coil. The position of the retainer rollers is adjustable to accommodate a variety of coil diameters. To remove coil set from the pipe unwinding from the coil, a reforming assembly includes a straightener and rerounder. The pipe reforming assembly is mounted on rollers on the base of the trailer for translating back and forth to track the pipe during unwinding to maintain alignment. The rerounder and straightener are provided with a releasable gate and top portion respectively, to assist in the loading and unloading of the pipe in the reforming assembly. In one embodiment, straightening occurs in the transition from the coil in the cradle to the reforming assembly.
Abstract:
A fiber optic cable (10) is buried below ground, either by direct burial, or by being pulled through a previously buried duct. During cable burial, the instantaneous resistance between the sheath and ground (the sheath-to-ground resistance) is continuously monitored. If the instantaneous sheath-to-ground resistance drops below a prescribed value, an alarm is generated, signaling a sheath fault. During burial, the length of cable paid out and placed underground is monitored, thus providing an indication of the relative location of the sheath fault.
Abstract:
A method and apparatus for laying a pipeline. Working and receiving pits are dug out. An active working member is dropped into the working pit at a preselected depth. The active working member is fixed to a vertical knife of a power mechanism. Polyethylene pipeline is secured to an end part of the active working member. Then the power mechanism is energized and simultaneously horizontal pulling forces of the power mechanism are applied to the vertical knife. The active working member may be a drill head with different nozzles (bits) connected with a mud supply unit by a hose passing through a hollow portion of the vertical knife. On a non-working end of the active member the pipeline is fixed by an adapter.
Abstract:
An anode cable installment system in which the apparatus may comprise a plow for creating a tunnel; a conduit for delivering a linear anode to the tunnel; and a chute disposed proximate the conduit, the chute having a non-metallic inner surface, preferably an epoxy film layer having a lower coefficient of friction than steel. The coke breeze may be delivered to the tunnel by passing it over the non-metallic inner surface of the chute; and to the annular space in the tunnel around the linear anode to provide a horizontal encasement or column for the linear anode with reduced void spaces and increased density.
Abstract:
A corrective trenchless pipeline installation method basically includes the operational steps of, first, forming a substantially irregular initial pilot hole underground in earthen matter between a pair of spaced entry and exit pits formed in the earthen matter, second, reforming the substantially irregular initial pilot hole into a substantially straight corrected pilot hole, third, reaming the corrected pilot hole to provide an expanded straight pilot hole, and, fourth, pulling a pipeline through the expanded corrected pilot hole. In reforming the irregular initial pilot hole to the straight corrected pilot hole a cutter blade is concurrently reciprocated back and forth through the irregular pilot hole and rotated relative to the irregular pilot hole to form the corrected straight pilot hole therefrom.
Abstract:
A plough by means of which a cable may be buried below the sea-bed is characterized by means to vary the length of the path of a cable extending through the plough, which means is responsive to changes in tension in the cable. In one preferred form of the plough, the cable extends over two surfaces and these surfaces are mounted so as to be relatively movable in response to changes in the cable tension.