Abstract:
A light guide plate includes a light incident surface to which light is incident as incident light, an opposite surface formed opposite to the light incident surface, a light emitting surface through which the incident light is emitted, a rear surface formed opposite to the light emitting surface and including a prism pattern which reflects the incident light to the light emitting surface, and lateral surfaces, wherein a diffuse reflection pattern is formed on at least any one of the light emitting surface and the lateral surfaces to diffuse-reflect light incident to the lateral surfaces, thus rendering a brightness at both the opposite surface and the light incident surface substantially uniform.
Abstract:
A display apparatus includes a display panel, a light source and a plurality of a light guiding plate. The LGP includes light incident, counter, light emitting and rear surfaces. The counter and rear surfaces are respectively opposite to the light incident and light emitting surfaces. The light emitting surface includes an ineffective light emitting area making contact with the light incident surface and an effective light emitting area connecting the ineffective light emitting area with the counter surface. The counter surface of a first light guiding plate is disposed overlapping the light incident surface of a second light guiding plate along a first direction, so that the rear surface partially overlaps with the effective light emitting area of the second light guiding plate, and the light guiding plates collectively form a light guiding plate array along the first direction.
Abstract:
A backlight assembly includes; a plurality of light guide blocks disposed substantially in parallel with each other along a first direction, each of the plurality of light guide blocks including; a light guide plate (“LGP”) having a wedge-shape decreasing in thickness from a first side thereof to a second side thereof, and a light source unit disposed facing a side surface of the LGP, and a light source driving unit which individually controls the light source units of the plurality of light guide blocks to emit light via a local dimming method.
Abstract:
A planar light source device includes a lower substrate, a cathode electrode a carbon nanotube, an upper substrate, a fluorescent layer, and an anode electrode. The cathode electrode is on the lower substrate. The carbon nanotube is electrically connected to the cathode electrode. The upper substrate faces the lower substrate. The fluorescent layer and the anode electrode are formed on the upper substrate. Therefore, the planar light source device generates light without using mercury.
Abstract:
Provided are a backlight assembly and a display device having the same. The backlight assembly includes a light source unit which generates light; and a light guide plate which comprises an incident light surface through which the light from the light source unit enters the light guide plate, an upper surface joined to the incident light surface and that includes a prism pattern, and a lower surface opposing the upper surface and formed with a plurality of concave portions. A diffusing pattern is formed on one of the upper surface and the lower surface.
Abstract:
A planar light source device includes a lower substrate, a cathode electrode a carbon nanotube, an upper substrate, a fluorescent layer, and an anode electrode. The cathode electrode is on the lower substrate. The carbon nanotube is electrically connected to the cathode electrode. The upper substrate faces the lower substrate. The fluorescent layer and the anode electrode are formed on the upper substrate. Therefore, the planar light source device generates light without using mercury.
Abstract:
An optical sheet includes a first plane, a second plane facing the first plane and a plurality of optical patterns. The optical patterns are formed on the second plane along a plurality of columns. An optical pattern includes a plurality of convex light-condensing portions. End portions of the light-condensing portions are connected to each other continuously and form crests and troughs. The optical patterns disposed in adjacent columns share a common side.
Abstract:
In accordance with one or more embodiments of the present disclosure, a light guide plate includes a first light incident surface receiving a first external light, a second light incident surface receiving a second external light and opposite to the first light incident surface, a light exit surface connecting the first and second light incident surfaces to output the first and second external lights, a reflective surface reflecting the first and second external lights in opposition to the light exit surface, and optical path changing portions each of which having a first inclined surface and a second inclined surface. The optical path changing portions are provided on the reflective surface with a predetermined interval and recessed toward the light exit surface to reflect the first and second external lights to the light exit surface.
Abstract:
A planar light source device includes a lower substrate, a cathode electrode a carbon nanotube, an upper substrate, a fluorescent layer, and an anode electrode. The cathode electrode is on the lower substrate. The carbon nanotube is electrically connected to the cathode electrode. The upper substrate faces the lower substrate. The fluorescent layer and the anode electrode are formed on the upper substrate. Therefore, the planar light source device generates light without using mercury.
Abstract:
A liquid crystal display according to the present invention comprises a first panel, a second panel facing the first panel, a liquid crystal layer disposed between the first panel and the second panel, and a polarizing film, wherein the polarizing film includes electrically conductive particles (e.g., carbon nanotubes or carbon nanofibers) and reflects a first polarization component parallel to the alignment direction of the electrically conductive particles and transmits a second polarization component perpendicular to the alignment direction of the electrically conductive particles.