Abstract:
A method for sequencing loads in an automated load-distribution system having k sources with k≥2; at least one destination; k FIFO-type source buffer devices, each receiving loads from one of the k sources; a collector collecting the loads coming from the k source buffer devices and transporting them to the at least one destination. The collector has k successive nodes each collecting the loads coming from one of the source buffer devices. The control system processes customer orders listing loads for a given destination and being associated with a sequential order number of destination. The control system: builds a collection list containing n loads to be collected and reducing a disorder of the n loads relative to a rising order of the sequential order numbers of destination; and controlling the collector and the source buffer devices to collect loads on the collector in compliance with the collection list.
Abstract:
A method for sequencing loads in an automated load-distribution system having k sources with k≥2; at least one destination; k FIFO-type source buffer devices, each receiving loads from one of the k sources; a collector collecting the loads from the k source buffer devices and transporting them to the at least one destination. The collector includes k successive nodes each configured to collect the loads from one of the source buffer devices. The control system processes customer orders listing loads for a given destination and being each associated with a sequential order number of destination. The control system: builds a collection list containing n loads to be collected and reducing a disorder of the n loads relative to a rising order of the sequential order numbers of destination; and controls the collector and the source buffer devices to collect loads compliant with the collection list.
Abstract:
A method is provided for preparing instructions that each list unit loads. The method includes: obtaining unit loads; inputting the unit 11 loads into a sorting system under the supervision of a control system; sorting the unit loads using a sorting system in accordance with the instructions from and under the supervision of the control system; and, for each instruction, providing, via the sorting system, unit loads listed in the instruction. The step of obtaining unit loads is followed by forming logistical units, each including one or more unit loads, on the basis of the instructions from and under the supervision of the control system. The inputting, sorting, and providing steps are carried out by handling the logistical units obtained.
Abstract:
A conveyor system includes successive modules forming a conveyor segment, each module includes a control device associated with, and controlling, at least one zone. Each control device includes a communication device for communicating with the control devices included in the adjacent modules. The control devices execute a mechanism for propagation and enrichment of quantitative segment information, from the two end zones of the conveyor segment, thereby providing for each zone: a first quantitative segment information item (propagated and enriched from upstream to downstream and relating to all of the zones in an upstream sub-segment located upstream from the zone) and/or a second quantitative segment information item (propagated and enriched from downstream to upstream and relating to all of the zones in a downstream sub-segment located downstream from the zone). Each control device dynamically adapts the behavior of each zone it controls, according to the available quantitative segment information.
Abstract:
A longitudinal member is provided for a load conveyor, including a main body having a plurality of holes suitable for receiving one end of a load supporting element. The main body has a C-section with first and second side flanges extending substantially perpendicularly from first and second ends of a central web. The longitudinal member includes a guiding element extending from the second side flange. The longitudinal member is reversible. In a first direction, the guiding element is located above the main body, the cavity opens opposite the load supporting elements and each of a first group of holes receives one end of one of the load supporting elements. In a second direction, the guiding element is located below the main body, the cavity opens opposite the load supporting elements and each of a second group of holes receives one end of one of the load supporting elements.
Abstract:
An automated storage/retrieval system is proposed. The system includes a control system, at least one storage unit having several levels at which loads can be picked or deposited and at least one interface conveyor for entries/exits of loads into and out of the system, and at least one elevator for a transfer of loads between said at least interface conveyor and the at least one storage unit. The at least one elevator is a multi-level elevator, and the automated storage/retrieval system furthermore includes at least one multi-level transfer device capable of simultaneously receiving, on several levels, a set of loads intended for or coming from at least one elevator; and at least one sequencer provided with elements of vertical moving and capable of transferring loads between the at least one multi-level transfer device and the at least one interface conveyor.
Abstract:
A method is provided for preparing instructions that each list unit loads. The method includes: obtaining unit loads; inputting the unit 11 loads into a sorting system under the supervision of a control system; sorting the unit loads using a sorting system in accordance with the instructions from and under the supervision of the control system; and, for each instruction, providing, via the sorting system, unit loads listed in the instruction. The step of obtaining unit loads is followed by forming logistical units, each including one or more unit loads, on the basis of the instructions from and under the supervision of the control system. The inputting, sorting, and providing steps are carried out by handling the logistical units obtained.
Abstract:
An automated distribution system includes sources storing loads, at least one destination, a control system, a first common transport system for transporting the loads leaving the sources and, downstream of the first common transport system and upstream of and associated with each destination, at least one plurality of first FIFO buffer devices, each dual to one of the sources. To process a command, the control system performs a first ordering, by instructing each source that the loads listed in the command should exit the source in a desired order; then a second ordering: by steering each of the loads of the command, exiting the first common transport system to the first buffer device associated with the desired destination dual to the given source; and by instructing the first buffer devices associated with the desired destination such that the loads exit towards the destination in the desired order.
Abstract:
The support block (130) of each motor of the drone comprises: a support part (131) onto which are fastened an electric motor (120) for driving a propulsion group (100) of the drone, and at least one component (111) of the propulsion group intended to be coupled to the motor; a stand foot (132) for supporting the drone on the ground; and a connection element (133) extending between the support part and the stand foot. The stand foot and the connection element providing together a clearance space (134) for the electric motor during the placement of the motor in its fastening position on the support part.
Abstract:
The support (300) is intended to be fixed in a housing provided in the drone, through a mechanical interface (310) made of a material absorbing the mechanical vibrations. The mechanical interface, annular in shape, is intended to be attached to a corresponding annular shoulder provided in the housing. A fastening part (301) for fixing the support in the housing carries the mechanical interface (310), with at least one connection leg (302) supporting the navigation electronic card (320) and mounted free at one end on the fastening part. A battery (400) for the power supply of the drone is further accommodated in the support. The navigation electronic card may notably include a navigation sensor (321) such as an accelerometer, placed on the card in such a manner to be positioned at the barycenter of the drone.