Abstract:
An embodiment of a magnetic-field sensor has a plurality of sensor elements connected to form measurement arrangements, each measurement arrangement having a measurement tap, and a control circuit formed to perform an embodiment of a method of calibrating the magnetic-field sensor.
Abstract:
A semiconductor device includes a first sensor element in a first branch of a Wheatstone bridge and a second sensor element in a second branch of the Wheatstone bridge. The semiconductor device includes a first reference element in the first branch and a second reference element in the second branch. The semiconductor device includes a circuit configured to switch the first sensor element to the second branch and the second sensor element to the first branch.
Abstract:
An apparatus for reading out a modulated time-continuous sensor output signal includes a loop filter, a sample-quantizer and a feedback circuit. The loop filter filters the sensor output signal to provide a filtered sensor output signal, and amplifies frequency proportions present in a frequency range. The sample-quantizer samples and quantizes the filtered sensor output signal to provide a time-discrete, quantized sensor output signal. The feedback circuit feeds a feedback signal based on the time-discrete, quantized sensor output signal back to the loop filter and provides a readout signal.
Abstract:
A semiconductor device includes a diaphragm, a sensing element, and a circuit. The sensing element is configured to sense deflection of the diaphragm. The circuit is configured to heat the diaphragm to induce deflection of the diaphragm.
Abstract:
In an embodiment of the present invention, a method for sensing a body is disclosed. The method includes measuring an impedance of a body occupying a seat over a plurality of frequencies and comparing the measured impedance of the body with a predefined body model. The method also includes determining whether the predefined body model corresponds to the measured impedance of the body.
Abstract:
An angle measurement system including a magnet coupled to a rotating member and adapted to provide a magnetic field which rotates with the rotating member about a rotational axis of the rotating member, and an integrated circuit angle sensor disposed within the magnetic field at a radially off-center position from the rotational axis. The integrated circuit angle sensor includes first and second bridges of magneto resistive elements configured to respectively provide first and second signals representative of substantially orthogonal first and second directional components of the magnetic field and together representative of an angular position of the rotating member, and a set of adjustment parameters for adjusting attributes of the first and second signals having values selected to minimize errors in the first and second signals.
Abstract:
A sensing system and method. A coded wheel is configured to generate a signal that varies with rotation of the coded wheel. A sensor is configured to sense the varying signal and output a corresponding signal. A correction module is configured to receive the signal output by the sensor and compare the received signal to a stored signal and detect a defect in the coded wheel in response to the comparison.
Abstract:
A sensor readout includes a selector circuit, a predictor circuit, and a select controller. The selector circuit receives a plurality of actual sensor inputs. Each actual sensor input is provided to the selector circuit along a corresponding channel. The selector circuit also passes a selected sensor input. The predictor circuit receives the selected sensor input into a signal history and generates predicted sensor inputs. The select controller receives the predicted sensor inputs, determines which of the predicted sensor inputs is most changed from the actual sensor inputs as the most changed input, and directs the selector circuit to pass a next signal on a the channel having the most changed input.
Abstract:
Embodiments discussed herein relate to sensor devices and processes of producing them. Some embodiments include a sensor device with a substrate with a sensing element mounted above the substrate, with a heating element, mounted substantially coplanar to the sensing element; and with a heat spreading element, the heat spreading element thermally coupling the sensing element and the heating element.
Abstract:
In the system for monitoring tire pressure in a tire of a vehicle, temporally successive tire pressure measured values are sensed by a transmitting unit, and at least part of the tire pressure measured values is transmitted to a receiving unit with a variable frequency of occurrence, wherein the frequency of occurrence is derived from the sensed tire pressure measured values by means of a control unit.