Abstract:
An imaging lens assembly includes a plurality of lens elements, wherein at least one of the lens elements is a dual molded lens element. The dual molded lens element includes a light transmitting portion and a light absorbing portion. The light transmitting portion includes an effective optical section. The light absorbing portion is located on at least one surface of an object-side surface and an image-side surface of the dual molded lens element, wherein a plastic material and a color of the light absorbing portion are different from a plastic material and a color of the light transmitting portion, and the light absorbing portion includes an opening. The opening is non-circular and disposed correspondingly to the effective optical section.
Abstract:
An imaging lens assembly includes a plastic barrel and a lens set, and the lens set is disposed in the plastic barrel. The plastic barrel includes an object-side outer surface, a first inner surface and a second inner surface. The lens set has an optical axis, and includes, in order from an object side to an image side thereof, at least one plastic lens element and a spacer. A light-absorbing coating is disposed on the plastic lens element. The spacer includes an object-side connecting surface and a relative surface. When the object-side connecting surface is connected with a neighboring object-side optical element, the relative surface is out of touch with the neighboring object-side optical element. There is an overlap between the second inner surface and the relative surface along a direction parallel to the optical axis.
Abstract:
The present disclosure provides a dual-molded circular optical element including an outer plastic peripheral portion and an inner sheet portion. The outer plastic peripheral portion locates at an outer annular surface of the circular optical element. The inner sheet portion is enclosed in the outer plastic peripheral portion, and the inner sheet portion forms a minimal central opening of the circular optical element. Two sides of the outer plastic peripheral portion are disposed with a flat plane, and each of the flat planes is perpendicular to a central axis of the circular optical element.
Abstract:
A plastic barrel includes an object-end portion, an image-end portion, an inner tube portion and a plurality of protrusions. The object-end portion includes an outer object-end surface, an object-end hole and an inner annular object-end surface. One side of the inner annular object-end surface is connected to the outer object-end surface and surrounds the object-end hole. The image-end portion includes an outer image-end surface, an image-end opening and an inner annular image-end surface. The inner annular image-end surface is connected to the outer image-end surface and surrounds the image-end opening. The inner tube portion connects the object-end portion and the image-end portion and includes a plurality of inclined surfaces. The protrusions are disposed at least on one of the inner annular object-end surface, the inner annular image-end surface and the inclined surfaces, wherein the protrusions are regularly arranged around the central axis of the plastic barrel.
Abstract:
A plastic barrel includes an object-end portion, an image-end portion, a tube portion and a plurality of wedge structures. The object-end portion includes an outer object-end surface, an object-end hole and an inner annular object-end surface. The image-end portion includes an outer image-end surface, an image-end opening and an inner annular image-end surface. The tube portion connects the object-end portion and the image-end portion, and includes a plurality of inclined surfaces. The wedge structures are disposed on at least one surface of the inner annular object-end surface, the inner annular image-end surface and the inclined surfaces, wherein the wedge structures are regularly arranged around the central axis, and each of the wedge structures includes an acute end and a tapered section. The tapered section connects the surface, which the wedge structure is disposed on, and the acute end.
Abstract:
An annular optical spacer includes a first side portion, a second side portion, an outer annular portion, an inner annular portion and an anti-reflective layer. The second side portion is opposite to the first side portion. The outer annular portion connects the first side portion with the second side portion. The inner annular portion connects the first side portion with the second side portion. A vertical distance between the inner annular portion and a central axis of the annular optical spacer is shorter than a vertical distance between the outer annular portion and the central axis of the annular optical spacer. The inner annular portion includes at least one rugged surface. The rugged surface includes a plurality of annular protruding structures, and the annular protruding structures are coaxially arranged around the central axis. The anti-reflective layer is on top of the rugged surface.
Abstract:
An imaging lens module includes an imaging lens assembly and a first optical component. The imaging lens assembly has an optical axis and includes a lens element. The lens element includes an effective optical portion, which is non-circular and disposed on a center of the lens element. The first optical component has a non-circular opening hole. The effective optical portion of the lens element of the imaging lens assembly is corresponded to the non-circular opening hole of the first optical component.
Abstract:
An imaging lens module includes an imaging lens assembly and a first optical component. The imaging lens assembly has an optical axis and includes a lens element. The lens element includes an effective optical portion, which is non-circular and disposed on a center of the lens element. The first optical component has a non-circular opening hole. The effective optical portion of the lens element of the imaging lens assembly is corresponded to the non-circular opening hole of the first optical component.
Abstract:
An annular optical spacer includes a first side portion, a second side portion, an outer annular portion and an inner annular portion. The second side portion is disposed opposite to the first side portion. The outer annular portion connects the first side portion and the second side portion. The inner annular portion connects the first side portion and the second side portion, wherein the inner annular portion is closer to a central axis of the annular optical spacer than the outer annular portion. The inner annular portion includes a plurality of annular grooves, wherein the annular grooves are disposed coaxially to the central axis, and each of the annular grooves includes a plurality of stepped surfaces.
Abstract:
An imaging lens assembly includes a barrel and a lens assembly, wherein the lens assembly is disposed in the barrel. The barrel has an incident light surface and a barrel cylindrical axis, wherein the incident light surface includes a specular region including at least one specular protrusion region disposed thereon. An angle between a shortest line from an innermost edge to an outermost edge of the specular protrusion region and a normal line to the barrel cylindrical axis is θ.