Abstract:
A photographing optical lens assembly comprises, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with refractive power has a concave object-side surface in a paraxial region. The second lens element has refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has an object-side and an image-side surfaces both being aspheric. The fifth lens element with refractive power has an aspheric object-side surface and an aspheric image-side surface being concave in a paraxial region with at least one inflection point. The photographing optical lens assembly has a total of five lens elements with refractive power.
Abstract:
This disclosure provides an optical image capturing lens system comprising: a positive first lens element having a convex object-side surface, a negative second lens element, a positive third lens element having a convex image-side surface, a fourth lens element having a concave object-side surface and a convex image-side surface; and a positive fifth lens element having a convex object-side surface at a paraxial region thereof, both of the object-side and image-side surfaces being aspheric, and at least one inflection point is positioned on at least one of the object-side and image-side surfaces thereof. When particular relations are satisfied, the angle at which light projects onto the image plane can be efficiently controlled for increasing the relative illumination and preventing the occurrence of vignetting.
Abstract:
An optical image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element and the third lens element have refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The fifth lens element with positive refractive power has a convex object-side surface, wherein at least one inflection point is on at least one surface thereof. The sixth lens element with negative refractive power has a concave object-side surface. The surfaces of the fifth and the sixth lens elements are aspheric. The optical image capturing system has a total of six lens elements with refractive power.
Abstract:
An optical image capturing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has negative refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The fifth lens element with refractive power has a concave image-side surface, wherein the fifth lens element has at least one inflection point formed on at least one surface thereof. Both of the object-side surface and the image-side surface of the fourth and fifth lens elements are aspheric. The optical image capturing lens assembly has a total of five lens elements with refractive power.
Abstract:
An optical image capturing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, and a sixth lens element. The first lens element with positive refractive power has an object-side surface being convex in a paraxial region. The second lens element with negative refractive power has an object-side surface being concave in a paraxial region and an image-side surface being convex in a paraxial region. The third lens element has refractive power. The fourth lens element with refractive power has an object-side surface being convex in a paraxial region. The fifth lens element with positive refractive power has an image-side surface being convex in a paraxial region. The sixth lens element with refractive power has an image-side surface being concave in a paraxial region.
Abstract:
An optical imaging system includes, in the order from an object side to an image side, a first lens element with positive refractive power, a second lens element, a third lens element, a fourth lens element, and a fifth lens element. Each of the fourth lens element and the fifth lens element includes at least one aspheric surface. The fourth lens element and the fifth lens element are made of plastic. The fifth lens element includes a concave image-side surface and at least one inflection point. An air gap is formed on an optical axis between every two lens elements adjacent to each other among all lens elements, and the optical imaging system further includes a stop.
Abstract:
An image lens assembly system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element has refractive power. The second lens element has positive refractive power. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element has refractive power. The sixth lens element with refractive power is made of plastic material, and has at least one surface being aspheric. The seventh lens element with refractive power is made of plastic material and has a concave image-side surface, wherein the image-side surface thereof changes from concave in a paraxial region thereof to convex in a peripheral region thereof, and at least one surface thereof is aspheric.
Abstract:
An image capturing optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element with negative refractive power has a concave object-side surface. The third lens element has negative refractive power. The fourth lens element has refractive power. The fifth lens element with positive refractive power has a convex image-side surface. The sixth lens element with refractive power has a concave image-side surface, wherein an object-side surface and the image-side surface of the sixth lens element are aspheric, and the sixth lens element has at least one inflection point on the image-side surface thereof.
Abstract:
An image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The second lens element with positive refractive power has a convex object-side surface. The third lens element has negative refractive power. The fourth lens element with positive refractive power has a convex image-side surface. The fifth lens element with negative refractive power has a concave image-side surface, wherein both of an object-side surface and the image-side surface of the fifth lens element are aspheric, and at least one inflection point is formed on at least one of the object-side surface and the image-side surface of the fifth lens element. The image capturing lens system has a total of five lens elements with refractive power.
Abstract:
A focus adjusting optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The fifth lens element with refractive power has a concave image-side surface at a paraxial region, wherein the image-side surface of the fifth lens element changes from concave at the paraxial region to convex at a peripheral region, and both of an object-side surface and the image-side surface of the fifth lens element are aspheric.