摘要:
A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q′ commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1′.
摘要:
An envelope sequence is provided that can improve approximation accuracy near peaks caused by the pitch period of an audio signal. A periodic-combined-envelope-sequence generation device according to the present invention takes, as an input audio signal, a time-domain audio digital signal in each frame, which is a predetermined time segment, and generates a periodic combined envelope sequence as an envelope sequence. The periodic-combined-envelope-sequence generation device according to the present invention comprises at least a spectral-envelope-sequence calculating part and a periodic-combined-envelope generating part. The spectral-envelope-sequence calculating part calculates a spectral envelope sequence of the input audio signal on the basis of time-domain linear prediction of the input audio signal. The periodic-combined-envelope generating part transforms an amplitude spectral envelope sequence to a periodic combined envelope sequence on the basis of a periodic component of the input audio signal in the frequency domain.
摘要:
An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R′o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, a case is comprised where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically decreases as a value having positive correlation with a pitch gain in an input signal of a current frame or a past frame increases.
摘要:
A frequency-domain sample interval corresponding to a time-domain pitch period L corresponding to a time-domain pitch period code of an audio signal in a given time period is obtained as a converted interval T1, a frequency-domain pitch period T is chosen from among candidates including the converted interval T1 and integer multiples U×T1 of the converted interval T1, and a frequency-domain pitch period code indicating how many times the frequency-domain pitch period T is greater than the converted interval T1 is obtained. The frequency-domain pitch period code is output so that a decoding side can identify the frequency-domain pitch period T.
摘要:
A frequency-domain sample interval corresponding to a time-domain pitch period L corresponding to a time-domain pitch period code of an audio signal in a given time period is obtained as a converted interval T1, a frequency-domain pitch period T is chosen from among candidates including the converted interval T1 and integer multiples U×T1 of the converted interval T1, and a frequency-domain pitch period code indicating how many times the frequency-domain pitch period T is greater than the converted interval T1 is obtained. The frequency-domain pitch period code is output so that a decoding side can identify the frequency-domain pitch period T.
摘要:
In encoding, pitch periods for time series signals in a predetermined time interval are calculated, and a code corresponding thereto is output. In that encoding, the resolutions for expressing the pitch periods and/or a pitch period encoding mode are switched according to whether an index indicating a periodicity and/or stationarity level of the time series signals satisfies a condition indicating high or low in periodicity and/or stationarity. In that decoding, according to whether an index indicating a periodicity and/or stationarity level, the index being included in or obtained from an input code corresponding to the predetermined time interval, satisfies a condition indicating high periodicity and/or stationarity, a decoding mode for a code, included in the input code, corresponding to pitch periods is switched to decode the code corresponding to the pitch periods to obtain the pitch periods corresponding to the predetermined time interval.
摘要:
In encoding, pitch periods for time series signals in a predetermined time interval are calculated, and a code corresponding thereto is output. In that encoding, the resolutions for expressing the pitch periods and/or a pitch period encoding mode are switched according to whether an index indicating a periodicity and/or stationarity level of the time series signals satisfies a condition indicating high or low in periodicity and/or stationarity. In that decoding, according to whether an index indicating a periodicity and/or stationarity level, the index being included in or obtained from an input code corresponding to the predetermined time interval, satisfies a condition indicating high periodicity and/or stationarity, a decoding mode for a code, included in the input code, corresponding to pitch periods is switched to decode the code corresponding to the pitch periods to obtain the pitch periods corresponding to the predetermined time interval.
摘要:
An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R′o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, a case is comprised where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically decreases as a value having positive correlation with a pitch gain in an input signal of a current frame or a past frame increases.
摘要:
An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R′o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, it is assumed that a case where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically increases as a value having negative correlation with a fundamental frequency of an input signal in a current frame or a past frame increases and a case where the coefficient wo(i) monotonically decreases as a value having positive correlation with a pitch gain in a current frame or a past frame increases, are included.
摘要:
In a speech coding scheme based on a speech production model, such as a CELP-based scheme, an object of the present invention is to provide a decoding method that can reproduce natural sound even if the input signal is a noise-superimposed speech. The decoding method includes a speech decoding step of obtaining a decoded speech signal from an input code, a noise generating step of generating a noise signal that is a random signal, and a noise adding step of outputting a noise-added signal, the noise-added signal being obtained by summing the decoded speech signal and a signal obtained by performing, on the noise signal, a signal processing that is based on at least one of a power corresponding to a decoded speech signal for a previous frame and a spectrum envelope corresponding to the decoded speech signal for the current frame.