摘要:
An apparatus for extracting an ambient signal from an input audio signal comprises a gain-value determinator configured to determine a sequence of time-varying ambient signal gain values for a given frequency band of the time-frequency distribution of the input audio signal in dependence on the input audio signal. The apparatus comprises a weighter configured to weight one of the sub-band signals representing the given frequency band of the time-frequency-domain representation with the time-varying gain values, to obtain a weighted sub-band signal. The gain-value determinator is configured to obtain one or more quantitative feature-values describing one or more features of the input audio signal and to provide the gain-value as a function of the one or more quantitative feature values such that the gain values are quantitatively dependent on the quantitative values. The gain value determinator is configured to determine the gain values such that ambience components are emphasized over non-ambience components in the weighted sub-band signal.
摘要:
An audio decoder for decoding a multi-audio-object signal having an audio signal of a first type and an audio signal of a second type encoded therein is described, the multi-audio-object signal having a downmix signal and side information, the side information having level information of the audio signals of the first and second types in a first predetermined time/frequency resolution, and a residual signal specifying residual level values in a second predetermined time/frequency resolution, the audio decoder having a processor for computing prediction coefficients based on the level information; and an up-mixer for up-mixing the downmix signal based on the prediction coefficients and the residual signal to obtain a first up-mix audio signal approximating the audio signal of the first type and/or a second up-mix audio signal approximating the audio signal of the second type.
摘要:
An audio encoder for providing an output signal using an input audio signal includes a patch generator, a comparator and an output interface. The patch generator generates at least one bandwidth extension high-frequency signal, wherein a bandwidth extension high-frequency signal includes a high-frequency band. The high-frequency band of the bandwidth extension high-frequency signal is based on a low frequency band of the input audio signal. A comparator calculates a plurality of comparison parameters. A comparison parameter is calculated based on a comparison of the input audio signal and a generated bandwidth extension high-frequency signal. Each comparison parameter of the plurality of comparison parameters is calculated based on a different offset frequency between the input audio signal and a generated bandwidth extension high-frequency signal. Further, the comparator determines a comparison parameter from the plurality of comparison parameters, wherein the determined comparison parameter fulfils a predefined criterion.
摘要:
An audio decoder for decoding a multi-audio-object signal having an audio signal of a first type and an audio signal of a second type encoded therein is described, the multi-audio-object signal having a downmix signal and side information, the side information having level information of the audio signals of the first and second types in a first predetermined time/frequency resolution, and a residual signal specifying residual level values in a second predetermined time/frequency resolution, the audio decoder having a processor for computing prediction coefficients based on the level information; and an up-mixer for up-mixing the downmix signal based on the prediction coefficients and the residual signal to obtain a first up-mix audio signal approximating the audio signal of the first type and/or a second up-mix audio signal approximating the audio signal of the second type.
摘要:
A multi-mode audio signal decoder has a spectral value determinator to obtain sets of decoded spectral coefficients for a plurality of portions of an audio content and a spectrum processor configured to apply a spectral shaping to a set of spectral coefficients in dependence on a set of linear-prediction-domain parameters for a portion of the audio content encoded in a linear-prediction mode, and in dependence on a set of scale factor parameters for a portion of the audio content encoded in a frequency-domain mode. The audio signal decoder has a frequency-domain-to-time-domain converter configured to obtain a time-domain audio representation on the basis of a spectrally-shaped set of decoded spectral coefficients for a portion of the audio content encoded in the linear-prediction mode and for a portion of the audio content encoded in the frequency domain mode. An audio signal encoder is also described.
摘要:
In one embodiment, C input audio channels are encoded to generate E transmitted audio channel(s), where one or more cue codes are generated for two or more of the C input channels, and the C input channels are downmixed to generate the E transmitted channel(s), where C>E≧1. One or more of the C input channels and the E transmitted channel(s) are analyzed to generate a flag indicating whether or not a decoder of the E transmitted channel(s) should perform envelope shaping during decoding of the E transmitted channel(s). In one implementation, envelope shaping adjusts a temporal envelope of a decoded channel generated by the decoder to substantially match a temporal envelope of a corresponding transmitted channel.
摘要:
An input audio signal having an input temporal envelope is converted into an output audio signal having an output temporal envelope. The input temporal envelope of the input audio signal is characterized. The input audio signal is processed to generate a processed audio signal, wherein the processing de-correlates the input audio signal. The processed audio signal is adjusted based on the characterized input temporal envelope to generate the output audio signal, wherein the output temporal envelope substantially matches the input temporal envelope.
摘要:
In a case of transient audio input signals, in a multi-channel audio reconstruction, uncorrelated output signals are generated from an audio input signal in that the audio input signal is mixed with a representation of the audio input signal delayed by a delay time such that, in a first time interval, a first output signal corresponds to the audio input signal, and a second output signal corresponds to the delayed representation of the audio input signal, wherein, in a second time interval, the first output signal corresponds to the delayed representation of the audio input signal, and the second output signal corresponds to the audio input signal.
摘要:
For adding additional data, such as multi-channel extension data, to base data, such as conventional stereo data, a test fingerprint of test data relating to a test time instant of the test data is provided. The test data equals the additional data or the base data or depends on the additional data or the base data in parametric manner. Using the test fingerprint, reference time instant information is determined, which depends on a reference time instant in reference data, the reference data being the conventional stereo data. Finally, the additional data or the base data is manipulated, namely using the reference time instant information and the test time instant information, to obtain manipulated data, by which synchronous reproduction of the data information can be performed. Thus, a robust and flexible possibility for synchronous, especially late extension of base data by additional data is obtained.
摘要:
For a multi-channel audio signal, parametric coding is applied to different subsets of audio input channels for different frequency regions. For example, for a 5.1 surround sound signal having five regular channels and one low-frequency (LFE) channel, binaural cue coding (BCC) can be applied to all six audio channels for sub-bands at or below a specified cut-off frequency, but to only five audio channels (excluding the LFE channel) for sub-bands above the cut-off frequency. Such frequency-based coding of channels can reduce the encoding and decoding processing loads and/or size of the encoded audio bitstream relative to parametric coding techniques that are applied to all input channels over the entire frequency range.