Abstract:
A touch control display panel, a touch control display device and a touch control display panel driving method are provided. The touch control display panel comprises a first substrate; a second substrate arranged opposite to the first substrate; a plurality of first electrodes disposed on the first substrate, a plurality of second electrodes disposed in a gap between two first electrodes and electrically insulated from the first electrodes, wherein the plurality of first electrodes and the plurality of second electrodes are disposed in a same layer; a third electrode disposed on the second substrate, wherein an orthogonal projection of the third electrode on the first substrate is at least overlapped with an orthogonal projection of the second electrodes on the first substrate; and at least one controlling unit connected to the first electrodes, the second electrodes and the third electrode.
Abstract:
A touch screen is provided. The touch screen includes a first strain sensor located in a first region, a second strain sensor located in a second region, a first power supply and a first voltage detector. The first region is surrounded by the second region, the first power supply is configured to provide an operating voltage to the first strain sensor and the second strain sensor. The first voltage detector is configured to detect a voltage of a common terminal of the first strain sensor and the second strain sensor, and one terminal of the first voltage detector is connected to a first preset voltage, and the other terminal of the first voltage detector is electrically connected to the common terminal of the first strain sensor and the second strain sensor.
Abstract:
There are provided according to the disclosure an array substrate, a touch display panel, and a detection method. The array substrate includes: a common electrode layer divided into multiple touch electrodes; multiple control circuits respectively connected to the plurality of touch electrodes, multiple first leads, each first lead is electronically connected to the first control terminals and the first input terminals of the control circuits corresponding to the touch electrodes in the same row with the first lead; and multiple second leads, each second lead is electronically connected to the second control terminals and the second input terminals of the control circuits corresponding to the touch electrodes in the same column with the second lead.
Abstract:
An electromagnetism and capacitance integrated touch screen, a touch display panel and a touch display apparatus are provided. Multiple virtual electrodes (generally located between a drive electrode and a detection electrode) in a capacitance touch structure are arranged to be coil-shaped, and the coil-shaped virtual electrode functions as a coil of an electromagnetism touch structure. In this way, the electromagnetism touch structure can be implemented without adding extra structure and process to the capacitance touch structure, thereby achieving compatibility between the electromagnetism touch structure and the capacitance touch structure.
Abstract:
A touch display panel and a display device are provided. The touch display panel includes a display area and a non-display area around the display area. The non-display area includes a plurality of pressure sensors. At least one of the plurality of pressure sensors is located a distance of H away from a closest corner of the touch display panel, where H satisfies: 2.5 mm
Abstract:
An array substrate, a display and an electronic device are disclosed. The array substrate includes a common electrode layer and a pixel electrode layer arranged opposite to each other, multiple switch elements, multiple data lines extending in a column direction, multiple common wires connected to the common electrode blocks respectively. The pixel electrode layer includes multiple pixel electrodes, and the common electrode layer includes multiple common electrode blocks. A pixel gap exists between adjacent columns of the pixel electrodes. The projections of the common wires on the pixel electrode layer are in separate pixel gaps from the projections of the data lines on the pixel electrode layer in the direction perpendicular to the pixel electrode layer. Two data lines having the projections in the same pixel gap are in separate layers.
Abstract:
A display device is disclosed. The display device includes a touch driving module, configured to cause the display device to perform a touch sensing function, a communication driving module, configured to cause the display device to perform a Near Field Communication (NFC) function, and a coil circuit. The touch driving module is further configured to receive and send a touch signal via the coil circuit, and the communication driving module is further configured to receive and send an NFC signal via the coil circuit.
Abstract:
An array substrate, a display panel and a display device are provided. The array substrate includes a display region and a frame region surrounding the display region. The frame region includes multiple bridge pressure sensing units and multiple first heat conductive sheets. Each of the multiple bridge pressure sensing units includes a bridge electrode, a first power supply line electrically connected to a power supply terminal of the bridge electrode, and a detection line electrically connected to a detection terminal of the bridge electrode. Each of the multiple first heat conductive sheets is arranged opposite to the bridge electrode, and a vertical projection of the first heat conductive sheet on the bridge electrode covers the bridge electrode.
Abstract:
A liquid crystal panel, a display device and a scanning method thereof is disclosed. The liquid crystal panel includes a CF substrate, a TFT substrate and a liquid crystal layer sandwiched between the CF substrate and the TFT substrate; the CF substrate includes a transparent substrate and an integrated capacitive-electromagnetic composite touch layer located at the inner side of the transparent substrate to identify touch signals; wherein, the integrated capacitive-electromagnetic composite touch layer includes a capacitive touch structure and an electromagnetic touch structure electrically insulated from each other. According to the embodiments of the present invention, the integrated capacitive-electromagnetic composite touch layer is integrated to the inner of the CF substrate, so that the liquid crystal display including the liquid crystal panel of the embodiments of the present invention has capacitive and electromagnetic touch functions and is relatively thin.
Abstract:
A touch panel is disclosed. The touch panel is detects a position of a stylus, which includes first and second resonance circuits. The touch panel includes first and second coils respectively extending in first and second directions. Each of the first coils emits a first signal having a first frequency and receives a second signal having a second frequency, where emitting the first signal and receiving the second signal are successively and respectively performed by the plurality of second coils. In addition, each of second coils emits a second signal having the second frequency and receives a first signal having the first frequency, where emitting the second signal and receiving the first signal are successively performed. The first resonance circuit of the stylus generates the first signal after receiving the first signal, and the second resonance circuit of the electromagnetic stylus generates the second signal after receiving the second signal.