摘要:
An imaging apparatus capable of reducing a line noise artifact in a simple configuration without complicated operations includes: a plurality of pixels arranged in row and column directions and having a photoelectric conversion element and a switch element; a plurality of signal wirings connected to the plurality of switch elements in the column direction; a read out circuit connected to the plurality of signal wirings; and a power source for supplying a voltage to the photoelectric conversion element. With the configuration, the plurality of pixels are classified into a plurality of groups, and the power sources are independently provided for each of the plurality of groups.
摘要:
A lamp emits pulse-shaped visible light when a wait period begins. If a radiation emission switch is not pressed in the wait period, X-ray radiation is not emitted from an X-ray source, and no charges are accumulated in photoelectric conversion elements of an X-ray imaging apparatus. In a non-read period, although signals are sequentially read from the photoelectric conversion elements, an output signal does not change. When the radiation emission switch is pressed in synchronization with a radiation-induced signal in a certain wait period, the X-ray source emits X-rays. After irradiation of X-rays, a photoelectric conversion period transitions to an actual read period. In the photoelectric conversion period, X-rays are emitted and transmitted X-ray information of a patient are accumulated in the photoelectric conversion elements of the X-ray imaging apparatus. In the actual read period, the accumulated information is read.
摘要:
A radiographic imaging apparatus includes a radiation detection circuit with elements arranged two-dimensionally to convert radiation into an electrical signal, a driving mechanism which changes a positional relationship between the components, a memory which stores that electrical signal, an imaging controller to control the radiation source so as to emit a first radiation pulse at a first energy for a first frame and to emit a second radiation pulse at a second energy for a second frame, controlling the driving mechanism to maintain the positional relationship during the first radiation pulse and the second radiation pulse and to change the positional relationship in a period between the first period and the second period. The frames are different and sequentially imaged, and an image processing unit for subtraction processing of the first and second frames in memory to generate a processed image, then generate a tomographic and a 3D image.
摘要:
A radiography apparatus includes a conversion unit having conversion elements arranged in a row-column pattern to convert radiations into an electrical signal. In an object-image reading operation, the conversion unit detects an object image based on illuminated radiations, and a drive circuit drives the conversion unit so as to allow the conversion unit to output a signal based on the object image. In an offset-data reading operation, the conversion unit detects offset data in a period when the radiations are not illuminating, and the drive circuit drives the conversion unit so as to allow the conversion unit to output a signal based on the offset data. When the numbers of lines driven concurrently by the drive circuit in the object-image reading operation is represented by n (equal to 1 or greater) and the numbers of lines driven concurrently by the drive circuit in offset-data reading operation is represented by m, the drive circuit controls the conversion unit so as to satisfy the expression: n
摘要:
When performing an offset correction, without lowering an image quality of the radiographed image data, a prompt radiographing is realized. Hence, a memory 105 stores a first image data for offset correction generated by performing an interlace scanning of the driving lines of odd rows only in a driving circuit unit 103. A memory 106 stores a second image data for offset correction generated by performing the interlace scanning of the driving lines of even row only in the driving circuit unit 103. A processing unit 108 synthesizes the first image data for offset correction and the second image data for offset correction, thereby to generate an image data for offset correction of one frame portion, and an arithmetic operation unit 109 performs an arithmetic operation processing on the radiation image data stored in a memory 107 by using the image data for offset correction of one frame portion synthesized and generated, thereby to perform the offset correction of the radiation image data.
摘要:
An imaging apparatus includes a sensor array in which a plurality of pixels each including a photoelectric conversion element and a switching element are arrayed in a row direction and a column direction, signal wiring connected to a plurality of the switching elements provided in the column direction, and a reading-circuit unit connected to the signal wiring, where the reading-circuit unit includes a first operational area including a first amplifying circuit and a second operational area including a second amplifying circuit connected to the first operational area, and the first and second amplifying circuits are each arranged to be supplied with power within a range, the maximum of the power-supply voltage range of the first amplifying circuit being larger than the maximum of a power-supply voltage range of the second amplifying circuit.
摘要:
A radiation imaging apparatus comprises a read unit reading the electric signal in the radiation detecting elements in a radiation detecting unit comprises the radiation detecting elements converting incident radiation into electric signals arranged two-dimensionally, a control unit controlling the radiation detecting unit with such that a first radiation detecting element group is made senseless state and a second radiation detecting element group is made sensible state, and a signal processing unit performing a subtraction processing such that the electric signal in the radiation detecting elements made senseless state read by the read unit is subtracted from the electric signal in the radiation detecting elements made sensible state read by the read unit according to the state control by the control unit, to reduce conspicuous line noise in an image by a relatively simple configuration.
摘要:
As to an electromagnetic radiation detecting apparatus, a radiation detecting apparatus, a radiation detecting system and a laser processing method, a TFT is disposed on an insulating substrate. A conversion element converting electromagnetic radiation into an electric signal is disposed over the TFT. A member for marking the position of the switching element is disposed on the conversion element. The position of a switching element having a defect can be located by means of the member on the conversion element. By radiating laser light to be focused on the member, it becomes possible to perform repair accurately.
摘要:
A lamp emits pulse-shaped visible light when a wait period begins. If a radiation emission switch is not pressed in the wait period, X-ray radiation is not emitted from an X-ray source, and no charges are accumulated in photoelectric conversion elements of an X-ray imaging apparatus. In a non-read period, although signals are sequentially read from the photoelectric conversion elements, an output signal does not change. When the radiation emission switch is pressed in synchronization with a radiation-induced signal in a certain wait period, the X-ray source emits X-rays. After irradiation of X-rays, a photoelectric conversion period transitions to an actual read period. In the photoelectric conversion period, X-rays are emitted and transmitted X-ray information of a patient are accumulated in the photoelectric conversion elements of the X-ray imaging apparatus. In the actual read period, the accumulated information is read.
摘要:
A plurality of correction images are obtained while changing the radiation energy of an incident radiation in the absence of an object. Subsequently, an object image is obtained in the presence of the object by emitting the radiation to the object. Then, the object image is corrected by using a correction image obtained under a radiation energy condition closest to the radiation energy of the obtained object image.