Abstract:
A seal support structure for a turbomachine includes a mounting portion shaped to mount to a stationary structure of a turbomachine and a cylindrical leg portion disposed on the mounting portion extending axially from the mounting portion. The cylindrical leg portion can include a radially extending flange. The flange can extend at an angle of 90 degrees from the end of the cylindrical leg portion. The flange can extend at least partially in an axial direction. The cylindrical leg portion can be formed integrally with the mounting portion. In embodiments, the cylindrical leg portion is not integral with the mounting portion, i.e., the cylindrical leg portion is a separate piece joined to the mounting portion.
Abstract:
A seal system is provided. The seal system may comprise a first duct having an annular geometry, a second duct overlapping the first duct in a radial direction, and a seal disposed between the first duct and the second duct. The seal may comprise a groove defined by the first duct and a piston configured to slideably engage the groove.
Abstract:
Inspection systems for a gas turbine engine (20) are provided. The inspection systems may comprise an inspection port (106), a bore-scope plug (100), a seal seat (108) and a seal (110A/110B). The bore-scope plug (100) may comprise a shaft (102A/102B) having a uniform or stepped profile. The seal (110A/110B) may be a multi-part seal (110A) or a piston seal (110B). Moreover, the bore-scope plug (100) may be configured to support, carry, and/or stabilize one or more internal structures such as, for example, a mid-turbine frame vane 82. In various embodiments, the inspection systems described herein may provide for increased inspection efficiency during development, qualification, maintenance, and event inspections.
Abstract:
A heat shield panel for a combustor of a gas turbine engine including a panel body having a first surface and a second surface. The second surface being configured to be oriented toward a combustor liner of the combustor. The heat shield further includes a plurality of first pin fins projecting from the second surface of the panel body. Each of the plurality of first pin fins has a rounded top opposite the second surface. The heat shield further includes a plurality of second pin fins projecting from the second surface of the panel body. Each of the plurality of second pin fins has a flat top opposite the second surface. The plurality of second pin fins are intermittently spaced amongst the plurality of first pin fins. The plurality of second pin fins are organized in a uniform distribution across the second surface of the heat shield panel.
Abstract:
A combustor for use in a gas turbine engine, the combustor enclosing a combustion chamber having a combustion area. The combustor includes: a shell having a kink; and a kinked heat shield panel in facing spaced relationship with the shell, the kinked heat shield panel including a kink located proximate the kink in the shell, wherein the kinked heat shield panel further includes a first surface, a second surface opposite the first surface, and a mounting stud located proximate the kink of the kinked heat shield panel and extending away from the second surface.
Abstract:
A method of manufacturing a heat shield panel including pouring melted wax into a negative pattern of the heat shield panel, the heat shield panel including first pin fins with rounded tops and second pin fins with flat tops; allowing the wax to solidify to form a positive pattern of the heat shield panel; removing the positive pattern from the negative pattern by using an ejector rod to push the positive pattern away from the negative pattern at the flat top of each of the one or more second pin fins; coating the positive pattern with a ceramic; melting the positive pattern away from the ceramic, the ceramic having a cavity forming a second negative pattern of the heat shield panel; pouring melted metal into the cavity; allowing metal in the cavity to cool to form the heat shield panel; and removing the ceramic from the heat shield panel.
Abstract:
A gas turbine engine component assembly including: a first component having a first surface and a second surface opposite the first surface; a second component having a first surface and a second surface opposite the first surface of the second component; and a cooling circuit formed in the second component, the cooling circuit including an inlet at the second surface of the second component, an outlet at the first surface of the second component, an inward surface, and an outward surface, the inward surface and the outward surface being in a facing spaced relationship extending from the inlet to the outlet defining an airflow passageway therebetween, wherein the airflow passageway includes a parallel portion that is oriented about parallel to at least one of the first surface of the second component and the second surface of the second component.
Abstract:
A combustor for use in a gas turbine engine, the combustor enclosing a combustion chamber having a combustion area. The combustor includes: a shell having a kink; and a kinked heat shield panel in facing spaced relationship with the shell, the kinked heat shield panel including a kink located proximate the kink in the shell, wherein the kinked heat shield panel further includes a first surface, a second surface opposite the first surface, and a mounting stud located proximate the kink of the kinked heat shield panel and extending away from the second surface.
Abstract:
A heat shield panel for a combustor of a gas turbine engine including a panel body having a first surface and a second surface. The second surface being configured to be oriented toward a combustor liner of the combustor. The heat shield further includes a plurality of first pin fins projecting from the second surface of the panel body. Each of the plurality of first pin fins has a rounded top opposite the second surface. The heat shield further includes a plurality of second pin fins projecting from the second surface of the panel body. Each of the plurality of second pin fins has a flat top opposite the second surface. The plurality of second pin fins are intermittently spaced amongst the plurality of first pin fins. The plurality of second pin fins are organized in a uniform distribution across the second surface of the heat shield panel.
Abstract:
A gas turbine engine includes a combustor. A turbine section is in fluid communication with the combustor. The turbine section includes a first vane stage aft of the combustor. A seal assembly is disposed between the combustor and the first vane stage. The seal assembly includes a plurality of openings communicating cooling airflow into a gap between an aft end of the combustor and the first vane stage. A combustor assembly and method are also disclosed.