Abstract:
A receptacle having a lid which has a pair of dampers configured to slow the movement of the lid from an open position toward a closed position. The dampers are provided at opposite ends of a pedal connected to the receptacle body at opposite lateral positions relative to a side of the receptacle body. The receptacle includes an air filtration device mounted in its lid which guides air through the filter device during the downward motion of the lid. The receptacle also includes at least one damper which provides dampening forces against the motion of the lid in both opening and closing directions. The receptacle also includes an anti-sliding device which increases the receptacle's resistance to sliding across a floor when a user steps on a pedal to actuate the lid.
Abstract:
A shelving system can include can include an elongated support member and a plurality of shelves, each of which can be supported by a clamping mechanism. The support member can have a telescoping configuration so that upper and lower ends of the support member can be pressed against upper and lower stationary objects.
Abstract:
A mirror assembly can include a housing, a mirror, and a light source. In certain embodiments, the mirror is rotatable within a support portion of the mirror assembly. In some embodiments, the mirror assembly is configured to use an audio sensor or an audio signal derived from an audio sensor, such as an audio sensor or audio signal configured to sense or to correspond to or to represent one or more voice commands or other sounds (e.g., clapping, snapping, or otherwise) received from a user, in order to actuate or adjust any of one or more features or settings of the mirror assembly.
Abstract:
Various embodiments of a trash can assembly (e.g., a receptacle configured to receive refuse, recycleable materials, or otherwise), and related methods, are provided. Some embodiments of the trash can assembly include a body component and a lid configured to move between an open position and a closed position. In some variants, the lid can be moved between the open and closed positions by a power operated driving mechanism, such as a motor and/or other drivetrain components. In certain embodiments, the trash can assembly includes a clutch mechanism to facilitate manual operation of the lid while inhibiting or preventing damage to the motor and/or other drivetrain components.
Abstract:
A mirror assembly can include a housing, a mirror, and a light source. In certain embodiments, the mirror is rotatable within a support portion of the mirror assembly. In some embodiments, the mirror assembly includes a light pipe configured to emit a substantially constant amount of light along a periphery of the mirror. In some embodiments, the mirror assembly includes a sensor assembly. The sensor assembly can be configured to adjust the amount of emitted light based on the position of a user in relation to the mirror.
Abstract:
Various embodiments of a trash can assembly (e.g., a receptacle configured to receive refuse, recyclable materials, or otherwise), and related methods, are provided. Some embodiments of the trash can assembly include a body component and a lid configured to move between an open position and a closed position. In some variants, the lid can be moved between the open and closed positions by a power operated driving mechanism, such as a motor and/or other drivetrain components. In certain embodiments, the trash can assembly includes a clutch mechanism to facilitate manual operation of the lid while inhibiting or preventing damage to the motor and/or other drivetrain components.
Abstract:
A mirror assembly can include a housing, a mirror, and a light source. In certain embodiments, the mirror includes a light pipe configured to emit a substantially constant amount of light along a periphery of the mirror. In some embodiments, the mirror assembly includes a sensor assembly. The sensor assembly can be configured to adjust the amount of emitted light based on the position of a user in relation to the mirror. Certain embodiments of the mirror include an algorithm to adjust light based on the position of a user relative to the mirror, the level of ambient light, and/or the activation of different light modes.
Abstract:
FIG. 1 is a top, front, left-side perspective view of a vanity mirror embodying our design in a first state; FIG. 2 is a top, rear, right-side perspective view thereof; FIG. 3 is a front elevation view thereof; FIG. 4 is a rear elevation view thereof; FIG. 5 is a right-side elevation view thereof; FIG. 6 is a left-side elevation view thereof; FIG. 7 is a top plan view thereof; and FIG. 8 is a bottom plan view thereof. FIG. 9 is a top, front, left-side perspective view of the vanity mirror embodying our design in a second state; FIG. 10 is a top, rear, right-side perspective view thereof; FIG. 11 is a front elevation view thereof; FIG. 12 is a rear elevation view thereof; FIG. 13 is a right-side elevation view thereof; FIG. 14 is a left-side elevation view thereof; FIG. 15 is a top plan view thereof; and, FIG. 16 is a bottom plan view thereof. All features in broken line form no part of the claimed subject matter.