Abstract:
Provided is an optical network system and optical network unit (ONU) structure enabling a passive optical access network having a meshed structure with at least two central nodes and plurality of ONUs. One embodiment employs a partially or fully meshed structure of optical fibers between customer locations and multiple optical line terminal (OLT) locations creating a passive optical access network. The ONUs can communicate with a neighboring OLT or ONU using a symmetrical or asymmetrical TDM scheme, and convert between the different TDM schemes. For this purpose, the ONU structure includes two transceiver units, one connected to the western network port and the other to the eastern. The ONU can establish communication between either network port and a further ONU or an OLT, with the ONU controller adapted for passing through data, and converting TDM schemes.
Abstract:
An optical frequency locking method tunes each of a plurality of narrow-band optical channel transmit signals (having arbitrary channel frequency spacings) to a dedicated optical channel frequency. The method includes tapping-off a portion of the optical power of the respective channel transmit signal and filtering the tapped-off channel transmit signal using at least one optical filter device. The method also includes monitoring, as an optical input signal, the optical power of the respective channel transmit signal supplied to the at least one optical filter device and, as an optical output signal, the optical power of the filtered channel transmit signal. The method further includes tuning, within a predetermined locking range for the dedicated optical channel frequency, the optical frequency of the respective channel transmit signal such that a predetermined value for the ratio of the output signal and the input signal is reached.
Abstract:
Provided is a method for reducing the impact of transient effects in an optical network. The optical network includes at least one span, and an optical signal having a plurality of sub-bands travels through at least one span of the at least one span of the optical network. Each of the at least one span has associated amplifiers and the associated amplifiers are connected to launch optical signals into a remainder of a corresponding optical transmission line. Respectively one of the sub-bands of the optical signal traveling through the span is amplified by one of these associated amplifiers. Each of the associated amplifiers includes at least one control element for controlling gain and tilt of the corresponding amplifier. The method includes the steps of for each span, acquiring an actual value of at least one performance parameter; for each span, respectively computing actual settings for each of the control elements included in the amplifiers associated to the corresponding span based on the actual value of the at least one performance parameter of the corresponding span; and for each span, respectively adjusting the settings of each of the control elements included in the amplifiers associated to the corresponding span based on the computed actual settings for the corresponding control element, in order to reduce the impact of transient effects.
Abstract:
A method for automatic detection of antenna site conditions, ASC, at an antenna site, AS, of an antenna, A, the method comprising the steps of providing (S1) signal source observations, SSO, derived from signals received by the antenna, A, from at least one signal source, SS, and transforming (S2) the signal source observations, SSO, into images fed to a trained image-processing artificial intelligence, AI, model which calculates antenna site conditions, ASC, at an antenna site, AS, of the respective antenna, A.
Abstract:
Provided is a method for monitoring a pump laser of at least one optical amplifier in an optical transmission link in operation. The optical output power of the pump laser to be monitored depends on an injection current. The pump laser to be monitored is operated at an operating point defined by a given value of the injection current and a corresponding value of the optical output power. The method includes the steps of shifting the operating point of the pump laser to be monitored to at least one shifted operating point. The shifting is effected in such a way that the gain of the respective optical amplifier essentially reaches its steady state, determining information on the at least one shifted operating point, and using the information on the operating point and the at least one shifted operating point to determine information on the stage of aging of the pump laser to be monitored.
Abstract:
A method for providing a maximum channel capacity per optical channel in an optical wavelength division multiplexing, WDM, transmission system is described. The WDM transmission system includes transceivers using multiple optical channels in a WDM channel grid to transport optical signals modulated with a modulation format with a signal symbol rate, SR, via an optical transmission link, OTL, along an optical path from a transmitting transceiver to a receiving transceiver. A channel capacity of the optical channel is maximized while a calculated channel margin, CM, is maintained above a preset minimal channel margin value.
Abstract:
The invention relates to a method and apparatus of operating a bidirectional optical transmission link. The optical transmission link includes a first and a second optical transceiver at a dedicated end of the optical transmission link and an optical path connecting the first and second optical transceiver. The optical transceivers apply the methods of converting an electrical digital transmit signal into an electrical PAM-n transmit signal, pre-emphasizing the electrical PAM-n transmit signal) by digital filtering and using the pre-emphasized electrical PAM-n signal2) as modulating signal for optically modulating an optical carrier signal. The optical modulation method deployed is configured to create an optical PAM-n transmit signal with a positive or negative chirp. For initializing the optical transmission link (100), an initialization process is performed in which at least one loop including the following steps is run through creating, in the first optical transceiver, an optical PAM-n training transmit signal and transmitting it to the second optical transceiver, the optical PAM-n training transmit signal being created using an electrical PAM-n training transmit signal including a binary training sequence. Initial values for filter parameters are used for pre-emphasizing the electrical PAM-n training transmit signal and an initial value is used for a chirp parameter that defines the positive or negative chirp of the optical PAM-n training transmit signal receiving, in the second optical transceiver, the optical PAM-n training transmit signal as an optical PAM-n training receive signal using direct detection. The optical PAM-n training receive signal is converted into an electrical PAM-n training receive signal. The method includes obtaining sampled values of the electrical PAM-n training receive signal (RPel,1) by sampling this signal at predetermined points in time; and using the sampled values obtained and corresponding sampled values of an ideal electrical PAM-n transmit signal to determine operating values for the filter parameters and an operating value for the chirp parameter.
Abstract:
There is provided a technique of establishing encryption keys for communication between 1st peer and 2nd peer via a data path. The technique comprises: by each peer, using input keying material to independently generate equivalent pairs of peer encryption keys (PEKs), verifying equivalence of the generated PEK pairs, and using by 1st peer and 2nd peer the verified PEK pairs to become in possession of equivalent pairs of session encryption keys (SEKs). Verifying comprises: generating by 1st peer a first handshake (HS) message encrypted by PEK Tx1 and sending the first HS message to the 2nd peer via the data path; decrypting by the 2nd peer the first HS message using the PEK Rx2, generating a second HS message encrypted by PEK Tx2, and sending the second HS message to the 1st peer via the data path; and decrypting the second HS message by the 1st peer using PEK Rx1.
Abstract:
Allowing a network function (such as a router, firewall or SD-WAN endpoint) or service chain of network functions to transparently access a network uplink, while also allowing a set of management entities to access the same link without interference or configuration. To the extent that a conflict arises between ports allocated to the management functions and to the network functions, the relevant port is automatically removed from use by management functions and allocated to network functions to end the conflict.
Abstract:
An apparatus for management of a spectral capacity of a wavelength division multiplexing, WDM, system includes at least one pair of transmission fibers provided for transporting optical signals. Each transmission fiber of a transmission fiber pair is connected to a first port of an optical circulator having at least two additional ports and adapted to transmit an incoming optical signal entering one of its ports via its next port. WDM subsystems configured with counter-propagating assignable wavelengths are connected to associated ports of the optical circulator of the apparatus.