Abstract:
In a speech training and recognition system, the current invention detects and warns the user about the similar sounding entries to vocabulary and permits entry of such confusingly similar terms which are marked along with the stored similar terms to identify the similar words. In addition, the states in similar words are weighted to apply more emphasis to the differences between similar words than the similarities of such words. Another aspect of the current invention is to use modified scoring algorithm to improve the recognition performance in the case where confusing entries were made to the vocabulary despite the warning. Yet another aspect of the current invention is to detect and warn the user about potential problems with new entries such as short words and two or more word entries with long silence periods in between words. Finally, the current invention also includes alerting the user about the dissimilarity of the multiple tokens of the same vocabulary item in the case of multiple-token training.
Abstract:
A method and also a configuration for determining a descriptive feature of a speech signal, in which a first speech model is trained with a first time pattern and a second speech model is trained with a second time pattern. The second speech model is initialized with the first speech model.
Abstract:
In one embodiment, a speech recognition program at a client receives data that is unrecognized, such as an unrecognized word, an unrecognized pronunciation of a known word, an unrecognized dialect of a known, and/or a substantially new word frequency usage. The client transmits the data to a provider, which processes the data into known data, and transmits the known data back to a number of clients, including the client that initially sent the unrecognized data. In one embodiment, the unrecognized data is sent from the client to the provider via a third party, to anonymize the data.
Abstract:
In a speech recognition system, a method and system for updating a language model during a correction session can include automatically comparing dictated text to replacement text, determining if the replacement text is on an alternative word list if the comparison is close enough to indicate that the replacement text represents correction of a mis-recognition error rather than an edit, and updating the language model without user interaction if the replacement text is on the alternative word list. If the replacement text is not on the alternative word list, a comparison is made between dictated word digital information and replacement word digital information, and the language model is updated if the digital comparison is close enough to indicate that the replacement text represents correction of a mis-recognition error rather than an edit.
Abstract:
In a method for determining the similarities of sounds across different languages, hidden Markov modelling of multilingual phonemes is employed wherein language-specific as well as language-independent properties are identified by combining of the probability densities for different hidden Markov sound models in various languages.
Abstract:
The present invention comprises a method for reducing the database requirements necessary for use in speaker independent recognition systems. The method involves digital processing of a plurality of recorded utterances from a first database of digitally recorded spoken utterances. The previously recorded utterances are digitally processed to create a second database of modified utterances and then the first and second databases are combined to form an expanded database from which recognition vocabulary tables may be generated.
Abstract:
An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.
Abstract:
The present invention discloses a pattern matching system applicable for syllable recognition which includes a dictionary means for storing a plurality of standard patterns each representing a standard syllable by at least a syllable feature. The pattern matching system further includes a converting means for converting an input pattern representing an unknown syllable into a categorizing pattern for representing the unknown syllable in the syllable features used for representing the standard syllables. The pattern matching system further includes a Bayesian categorizing means for matching the standard pattern representing the standard syllable and the categorizing pattern representing the unknown syllable for computing a Bayesian mis-categorization risk for each of the standard syllables, the Bayesian categorization means further including a comparing and identification means for selecting a standard syllable which has the least mis-categorization risk as an identified syllable for the input unknown syllable.
Abstract:
A speech recognition method implemented in a computer system recognizes words without requiring prior creation of models for such words based on spoken entries. A key word is entered in nonspoken form and a string of phonemes are defined by the speech recognizer to represent the new key word. A response signal is generated from each phoneme in the new key word model. Such response signals are utilized to define a multidimensional validity field for the new key word. Upon receipt of a spoken word from a user, a string of phonemes is assigned to represent the spoken word. A response signal from each phoneme in the model used to represent the spoken word is contrasted with the validity fields previously defined for the corresponding key word. A determination is made as to whether the spoken word is valid or not based on whether the response signals representing the spoken word lie within the validity fields.
Abstract:
A general approach is provided for the combined use of several sources of information in the automatic recognition of a consistent message. For each message unit (e.g., word) the total likelihood score is assumed to be the weighted sum of the likelihood scores resulting from the separate evaluation of each information source. Emphasis is placed on the estimation of weighing factors used in forming this total likelihood. This method can be applied, for example, to the decoding of a consistent message using both handwriting and speech recognition. The present invention includes three procedures which provide the optimal weighing coefficients.