Process for producing a membrane electrode assembly and the membrane electrode assembly produced thereby
    2.
    发明授权
    Process for producing a membrane electrode assembly and the membrane electrode assembly produced thereby 失效
    用于制造膜电极组件的方法和由此制备的膜电极组件

    公开(公告)号:US06893761B2

    公开(公告)日:2005-05-17

    申请号:US10147102

    申请日:2002-05-15

    摘要: The invention comprises a process for making a membrane electrode assembly comprising a polymer electrolyte membrane having two opposite faces, on each face of which is applied a catalyst layer and a gas distribution layer. The two gas distribution layers in the membrane electrode assembly are formed by hydrophobized carbon substrates which, using appropriate inks containing at least one catalyst, dissolved ionomer and solvent, are each coated with a catalyst layer and are then laid on opposite faces of the polymer electrolyte membrane with the catalyst layers still in the moist state. Afterwards, a firm bond between electrolyte membrane, catalyst layers and carbon substrates is produced by treating the membrane electrode assembly at elevated temperature under pressure.

    摘要翻译: 本发明包括一种制造膜电极组件的方法,该膜电极组件包括具有两个相对面的聚合物电解质膜,每个表面上涂覆有催化剂层和气体分布层。 膜电极组件中的两个气体分配层由疏水化的碳基底形成,其中使用含有至少一种催化剂,溶解的离子交联聚合物和溶剂的合适的油墨各自涂覆有催化剂层,然后铺设在聚合物电解质的相对表面上 膜与催化剂层仍处于潮湿状态。 之后,通过在压力升高的温度下处理膜电极组件来产生电解质膜,催化剂层和碳基底之间的牢固结合。

    Process for the multilingual use of a hidden markov sound model in a speech recognition system
    3.
    发明授权
    Process for the multilingual use of a hidden markov sound model in a speech recognition system 有权
    在语音识别系统中多语言使用隐马尔科夫声音模型的过程

    公开(公告)号:US06212500B1

    公开(公告)日:2001-04-03

    申请号:US09254775

    申请日:1999-03-09

    申请人: Joachim Köhler

    发明人: Joachim Köhler

    IPC分类号: G10L506

    摘要: In a method for determining the similarities of sounds across different languages, hidden Markov modelling of multilingual phonemes is employed wherein language-specific as well as language-independent properties are identified by combining of the probability densities for different hidden Markov sound models in various languages.

    摘要翻译: 在用于确定不同语言之间的声音的相似性的方法中,使用多语言音素的隐马尔可夫模型,其中通过将各种语言的不同隐马尔可夫语音模型的概率密度组合来识别语言特定以及与语言无关的属性。

    Water-based catalyst inks and their use for manufacture of catalyst-coated substrates
    5.
    发明授权
    Water-based catalyst inks and their use for manufacture of catalyst-coated substrates 有权
    水性催化剂油墨及其制备催化剂涂覆基材的用途

    公开(公告)号:US06844286B2

    公开(公告)日:2005-01-18

    申请号:US10629442

    申请日:2003-07-28

    摘要: The present invention relates to water-based catalyst inks and their use for manufacture of catalyst-coated substrates. According to the present invention, a catalyst layer is applied to the hydrophobic surface of a substrate by using a water-based catalyst ink comprising an electrocatalyst, an ionomer and water. The catalyst ink also comprises a highly volatile surfactant having a vapor pressure at ambient temperature in the range of 1 to 600 Pa. The use of this surfactant allows applying the water-based ink to the hydrophobic surface of a variety of substrates, such as gas diffusion layers, advanced ionomer membranes and polymer substrates. The required coating deposit can be applied in one coating pass and the resulting catalyst layer exhibits improved performance due to the absence of residual surfactant in the catalyst layer.

    摘要翻译: 本发明涉及水基催化剂油墨及其制备催化剂涂覆基材的用途。 根据本发明,通过使用包含电催化剂,离聚物和水的水性催化剂油墨将催化剂层施加到基材的疏水性表面。 催化剂油墨还包括在环境温度为1至600Pa范围内的蒸汽压的高挥发性表面活性剂。使用该表面活性剂可将水性油墨施加到各种基材例如气体的疏水表面 扩散层,高级离聚物膜和聚合物基材。 所需的涂层沉积物可以在一个涂布道次中施加,并且由于在催化剂层中不存在残留的表面活性剂,所得催化剂层表现出改进的性能。

    Adapting a hidden Markov sound model in a speech recognition lexicon
    6.
    发明授权
    Adapting a hidden Markov sound model in a speech recognition lexicon 有权
    在语音识别词典中适应隐马尔科夫声音模型

    公开(公告)号:US06460017B1

    公开(公告)日:2002-10-01

    申请号:US09254785

    申请日:1999-06-10

    IPC分类号: G10L1500

    摘要: When adapting a lexicon in a speech recognition system, a code book of hidden Markov sound models made available with a speech recognition system is adapted for specific applications. These applications are thereby defined by a lexicon of the application that is modified by the user. The adaption ensues during the operation and occurs by a shift of the stored mid-point vector of the probability density distributions of hidden Markov models in the direction of a recognized feature vector of sound expressions and with reference to the specifically employed hidden Markov models. Compared to standard methods, this method has the advantage that it ensues on-line and that it assures a very high recognition rate given a low calculating outlay. Further, the outlay for training specific sound models for corresponding applications is avoided. An automatic adaption to foreign languages can ensue by applying specific hidden Markov models from multi-lingual phonemes wherein the similarities of sounds across various languages is exploited. Given the methods for the acoustically phonetic modelling thereby employed, both language-specific as well as language-independent properties are taken into consideration in the combination of the probability densities for different hidden Markov sound models in various languages.

    摘要翻译: 当在语音识别系统中适应词典时,具有语音识别系统的隐马尔可夫语音模型的代码本适用于特定应用。 这些应用由此被用户修改的应用程序的词典定义。 在操作期间进行适应,并且通过将所存储的隐马尔可夫模型的概率密度分布的中点向量在所识别的声音表达特征向量的方向上并参考具体使用的隐马尔可夫模型进行移位。 与标准方法相比,该方法具有在线的优点,并且由于计算费用低,确保了非常高的识别率。 此外,避免了用于针对相应应用来训练特定声音模型的费用。 通过应用来自多语言音素的特定的隐马尔科夫模型可以自动适应外语,其中利用各种语言的声音的相似性。 考虑到由此使用的声学语音模型的方法,考虑到不同语言中不同隐马尔可夫语音模型的概率密度的组合,语言特异性和语言无关性。