Abstract:
Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in an aliphatic liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, preferably in multiple stages, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
Abstract:
A solid catalyst component comprises a transition metal-containing metallocene compound, a non-cyclopentadienyl transition metal compound, a magnesium compound and a polymeric material which acts as a support. The catalyst component is combined with co-catalyst organoaluminum compound or a mixture of organoaluminum compounds to provide a catalyst composition useful for olefin polymerization, e.g., to produce linear low, medium and high density polyethylenes or copolymerization of ethylene with alpha-olefins. Product polyolefin polymers have a varied range of molecular weight distributions. The catalyst composition is prepared by a process comprising combining polymer support particles, magnesium compound, transition metal-containing metallocene compound, and non-cyclopentadienyl transition metal compound to provide a solid catalyst component, and, combining the solid catalyst component with a cocatalyst compound to provide a polyolefin polymerization catalyst composition.
Abstract:
This invention relates to metallocene compositions and their use in the preparation of catalyst systems for olefin polymerization, particularly propylene polymerization. The metallocene compositions may be represented by the formula: 1 wherein M1 is selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten, preferably zirconium, hafnium or titanium, most preferably zirconium; R1 and R2 are identical or different, and are one of a hydrogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C10 aryl group, a C6-C10 aryloxy group, a C2-C10 alkenyl group, a C2-C40 alkenyl group, a C7-C40 arylalkyl group, a C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, an OH group or a halogen atom, or a conjugated diene which is optionally substituted with one or more hydrocarbyl, tri(hydrocarbyl)silyl groups or hydrocarbyl, tri(hydrocarbyl)silylhydrocarbyl groups, said diene having up to 30 atoms not counting hydrogen; preferably R1 and R2 are identical and are a C1-C3 alkyl or alkoxy group, a C6-C8 aryl or aryloxy group, a C2-C4 alkenyl group, a C7-C10 arylalkyl group, a C7-C12 alkylaryl group, or a halogen atom, preferably chlorine; R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C10 alkyl group which may be halogenated, a C6-C10 aryl group which may be halogenated, a C2-C10 alkenyl group, a C7-C40-arylalkyl group, a C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, a nullNRnull2, nullSRnull1, nullORnull, nullOSiRnull3 or nullPRnull2 radical, wherein Rnull is one of a halogen atom, a C1-C10 alkyl group, or a C6-C10 aryl group; preferably R3 is not a hydrogen atom; preferably each R3 is identical and is a fluorine, chlorine or bromine, atom, a C1-C4 alkyl group which may be halogenated, a C6-C8 aryl group which may be halogenated, a nullNRnull2, nullSRnull, nullORnull, nullOSiRnull3 or nullPRnull2 radical, wherein Rnull is one of a chlorine atom, a C1-C4 alkyl group, or a C6-C8 aryl group; more preferably, R3 are identical and are each a C3 alkyl group, most preferably isopropyl groups; alternatively, R3 is a C1 or C2 alkyl group; R4 to R7 are identical or different and are hydrogen, as defined for R3 or two or more adjacent radicals R5 to R7 together with the atoms connecting them form one or more rings, preferably a 4-8 membered ring , more preferably a 6-membered ring; 2 nullB(R14)null, nullAl(R14)null, nullGenull, nullSnnull, nullOnull, nullSnull, nullSOnull, nullSO2-, nullN(R14)null, nullCOnull, nullP(R14)null, or nullP(O)(R14)null, or an amidoborane radical; wherein: R14, R15and R16 are identical or different and are a hydrogen atom, a halogen atom, a C1-C20 alkyl group, a C1-C20 fluoroalkyl or silaalkyl group, a C6-C30 aryl group, a C6-C30 fluoroaryl group, a C1-C20 alkoxy group, a C2-C20 alkenyl group, a C7-C40 arylalkyl group, a C8-C40 arylalkenyl group, a C7-C40 alkylaryl group, or R14 and R15, together with the atoms binding them, form a cyclic ring; preferably, R14, R15and R16 are identical and are a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a CF3 group, a C6-C8 aryl group, a C6-C10 fluoroaryl group, more preferably a pentafluorophenyl group, a C1-C4 alkoxy group, in particular a methoxy group, a C2-C4 alkenyl group, a C7-C10 arylalkyl group, a C8-C12 arylalkenyl group, or a C7-C12alkylaryl group; or, R13 is represented by the formula: 3 wherein R17 to R24 are as defined for R1 and R2, or two or more adjacent radicals R17 to R24, including R20 and R21, together with the atoms connecting them form one or more rings; preferably, R17 to R24 are hydrogen. M2 is one or more carbons, silicon, germanium or tin, preferably silicon; R8, R10 and R12 are identical or different and have the meanings stated for R4 to R7; R9 and R11 are identical or different and are a Group IVA radical having from 1 to 20 carbon atoms or are each primary, secondary or tertiary butyl groups, aryl groups, isopropyl groups, fluoroalkyl groups, trialkyl silyl groups, or other groups of similar size, preferably a tertiary butyl group.
Abstract:
The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one null-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two null-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
Abstract:
A copolymer of ethylene and an alpha-olefin contains from 3 to 12 carbon atoms, wherein 0.1 to 1.5 mol % of the units originate from the alpha-olefin. The copolymer has a relative density ranging from 0.960 to 0.940, a transition metal content lower than 6 ppm, an Mw/Mn ratio higher than 7, an Mz/Mw ratio higher than 3.3 and an Mz higher than 300,000. The copolymer is prepared from the polymerization or co-polymerization of at least one olefin in the presence of a solid catalytic component or a prepolymerized catalyst.
Abstract:
The invention provides a method for producing null-olefin-aromatic vinyl compound copolymers of high quality at high productivity. The method for producing an null-olefin-aromatic vinyl compound copolymer including copolymerizing an null-olefin and an aromatic vinyl compound in the presence of a copolymerization catalyst formed of a transition metal compound component (A) and a co-catalyst component (B) wherein the component (A) employs a transition metal compound having two cross-linking groups wherein at least one of the cross-linking groups is a cross-linking group exclusively formed of a carbon-carbon bond.
Abstract:
The present invention relates to a process for polymerizing olefin(s) in the presence of polymerization catalyst a Group 13 containing compound and a carboxylic acid. The invention also relates to a process for transitioning from one polymerization catalyst to another.
Abstract:
This description addresses a process for the preparation of polyolefins from one or more olefinic monomers comprising combining under polymerization conditions said olefins with the product of combining i) an organometallic catalyst compound and ii) a cocatalyst complex comprising a trialkylsilyl-substituted carbenium cation and a suitable noncoordinating or weakly coordinating anion. These complexes exhibit good solubility in aliphatic solvents such that use in aliphatic solution based polymerization reaction processes can be conducted without the use of aromatic solvents or co-solvents and without the need for slurry means of introduction into chemical reaction environments. High number-average molecular weight polymers and copolymers at high rates of productivity were observed from the use of metallocene catalysts complexes when activated with null(3, 5-(Et3Si)2Ph)3Cnullnull null(C6F5) Bnullnull and used in a hexane-based solution polymerization.
Abstract:
A solid self-supported cycloalkadienyl catalyst component is disclosed that includes: (i) a mixed metal alkoxide complex which is the reaction product of a magnesium alkoxide or aryloxide and at least one group IVB metal-containing alkoxide or aryloxide; and (ii) Cp, where Cp is a cyclic or polycyclic hydrocarbon having from 3-30 carbon atoms. A self-supported hybrid catalyst also is disclosed which contains the above components (i) and (ii), as well as (iii) a Ziegler-Natta catalyst species. A method of making the self-supported cycloalkadienyl catalyst and the self-supported hybrid catalyst and a method of polymerizing olefins using the catalysts also are disclosed. The catalysts are capable of producing polyolefins in high yield having a broad molecular weight distribution, or a bimodal distribution.
Abstract:
A novel constrained geometry titanium(II) diene complex and ligands of such complexes are described. The novel complex has an olefin polymerization activity substantially in excess of a defined activity standard characteristic of analogous prior art constrained geometry diene complexes. Methods for the synthesis of the novel, high-activity complexes are described.