Abstract:
A dual-shaft synchronous movement device includes a first shaft and a second shaft, which are synchronously rotatable. The synchronous movement device further includes a first rotor and/or a third rotor disposed on the first shaft and a second rotor and/or a fourth rotor disposed on the second shaft, and an inextensible/non-contractible flexible plate connected between the first (or the third rotor) and the second rotor (or the fourth rotor). When the first shaft drives the first rotor (or the third rotor) to rotate, the inextensible/non-contractible flexible plate pulls the second rotor (or the fourth rotor) to rotate in a direction reverse to a moving direction of the first rotor so as to make the first and second shafts synchronously rotate. The synchronous movement device solves the problem of delay of kinetic energy transmission and the problem of slippage, deflection and untrue operation of the conventional device.
Abstract:
A dual-shaft synchronous movement device and an assembling method thereof. The dual-shaft synchronous movement device includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The invention includes providing an assembling device and arranging on the assembling device a first rotor and a second rotor (or a third rotor and a fourth rotor) between which a drive section is wound; winding the drive section onto the first and second rotors (or the third and fourth rotors) in a tensioned state; and pushing the first and second rotors (or the third and fourth rotors) onto the first and second shafts. Through the first and second rotors (or the third and fourth rotors) and the drive section, when the first shaft is rotated, the second shaft is synchronously rotated.
Abstract:
A dual-shaft pivot device includes a resilient guide assembly composed of a plurality of resilient guide members and first and second pivotal shafts. Each resilient guide member has two accommodation portions at two ends thereof and a connecting groove communicating with the two accommodation portions. One end of the inner wall of each accommodation portion, far away from the connecting groove, has an end protrusion. The first and second pivotal shafts have middle portions which are inserted in the accommodation portions of the resilient guide member. Each middle portion has at least one middle flat surface to get contact with the end protrusion for the middle portion to push the end protrusion during turning to bring resilient deformation of each accommodation portion.
Abstract:
A shield module travel enlarging structure includes a front cover and a rear cover formed with opposite windows. The front and rear covers are assembled to form a module main body having an internal operation space. A shield is mounted in the operation space and movable between a position in alignment with the opposite windows and a position misaligned from the opposite windows. A transmission gear is mounted in the internal operation space of the module main body to cooperate with the shield. The transmission gear at least has a large-gear-ratio gear and a small-gear-ratio gear. The large-gear-ratio gear is drivingly engaged with the shield. A push member is drivingly engaged with the small-gear-ratio gear. When the push member is moved, via the transmission gear, the shield is slid by an enlarged travel.
Abstract:
A synchronous folding device includes two opposing folding members and a multi-joint rotary axle structure mounted between the two folding members. The multi-joint rotary axle structure has two ends which can be folded or unfolded synchronously. The multi-joint rotary axle structure includes a driving joint assembly and a driven joint assembly. The driving joint assembly includes two opposing joint plates and a middle link plate. Two ends of the driving joint assembly are respectively connected to the two opposing folding members. Each joint plate of the driving joint assembly can be turned free through plural turning centers so that both ends can be closed or opened synchronously for the folding device to be folded or unfolded accurately.
Abstract:
A synchronous movement device applied to dual-shaft system includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The synchronous movement device further includes a driver disposed on the first shaft and a reactor disposed on the second shaft and a link unit connected between the driver and the reactor. When the first shaft drives the driver to rotate, the driver pushes the link unit to move along the first and second shafts to forcedly push the reactor to rotate in a direction reverse to the moving direction of the driver. Accordingly, the first and second shafts are synchronously rotated.
Abstract:
A uniform distribution support structure of rotary shaft link assembly includes a rotary shaft assembly and a support assembly. The rotary shaft assembly has multiple connection members. Each connection member is formed with a hollow section and a perforation. A guide face is disposed in each hollow section. A spacer shaft rod is disposed between each two adjacent connection members. Each spacer shaft rod is formed with a through hole. A guide arched face is disposed in each through hole. The support assembly has a support member and a lateral support member passing through the through holes and the hollow sections. Multiple opposite guide arched faces are disposed on the support member. Multiple opposite guide faces are disposed on the lateral support member. The guide faces and the guide arched faces respectively abut against the opposite guide faces and the opposite guide arched faces.
Abstract:
The pivot shaft structure moving around virtual axis includes an assembly of a main body, a first operation board and a second operation board disposed on the main body. The first operation board has an arm section. The second operation board has an arm section. The arm sections of the first and second operation boards are respectively received in a first arched rail and a second arched rail of the main body. The first and second arched rails are arched and disposed around a virtual axis. When a user operates the first operation board or the second operation board to move, the first operation board or the arm section thereof and the second operation board or the arm section thereof respectively synchronously move around the virtual axis along the first and second arched rails toward each other to achieve opening/closing effect.
Abstract:
A uniform distribution support structure of rotary shaft link assembly includes a rotary shaft assembly and a support assembly. The rotary shaft assembly has multiple connection members. Each connection member is formed with a hollow section and a perforation. A guide face is disposed in each hollow section. A spacer shaft rod is disposed between each two adjacent connection members. Each spacer shaft rod is formed with a through hole. A guide arched face is disposed in each through hole. The support assembly has a support member and a lateral support member passing through the through holes and the hollow sections. Multiple opposite guide arched faces are disposed on the support member. Multiple opposite guide faces are disposed on the lateral support member. The guide faces and the guide arched faces respectively abut against the opposite guide faces and the opposite guide arched faces.
Abstract:
A dual-shaft driving module includes two shafts and a synchronizing block sandwiched between the two shafts. The two shafts are substantially parallel to each other and are substantially in a mirror symmetrical arrangement. Each shaft has two spiral grooves recessed on an outer surface thereof, and each spiral groove has a spiral angle within a range of 40 degrees to 60 degrees. The synchronizing block includes two concave surfaces arranged on two opposite sides thereof and four driving portions respectively protruding from the two concave surfaces. The two concave surfaces respectively face the two shafts, and each concave surface accommodates a part of the corresponding shaft. The four driving portions are respectively inserted into the four spiral grooves. When one of the two shafts is spun to transmit a force to the synchronizing block, the synchronizing block rotates the other shaft at the same time by the force.