Abstract:
A plasma display device wherein a circuit pattern is formed on a substrate of one end of an address electrode of a plasma display panel, the circuit pattern is connected with a logic board assembly by a tape carrier package, and the tape carrier package is stably held. The plasma display device includes a plasma display panel having a pair of substrates. A chassis base is used to support the plasma display panel. A printed circuit board assembly is mounted on the chassis base. Circuit patterns that include terminals are formed on the substrate formed with address electrodes and signal lines applying power and control signals. A first tape carrier package having a first end connected to the terminals and a second end forming a free end and that mounts a drive IC between the first end and the second end. A second tape carrier package connects the signal line with the printed circuit board assembly. A cover plate that covers the first tape carrier package and the second tape carrier package.
Abstract:
In a plasma display, image data are mapped on N subfields, and the subfield with the greatest weight is determined from among the mapped subfields. When the subfield with the greatest weight is the Kth subfield (K>M), grayscales of the image data are expressed with the mapped data of the (K−M+1)th subfield to the Kth subfield, and the mapped data from the first subfield to the (K−M)th subfield may be ignored.
Abstract:
A driving apparatus of a plasma display panel for applying a rising or falling waveform to a panel capacitor, comprising a transistor for forming a current path between a power source and the panel capacitor while the transistor is turned on, and which is coupled between the power source and one end of the panel capacitor. A first capacitor and a second capacitor are coupled in parallel to each other and in between a drain and a gate of the transistor. A first resistor and a first diode are coupled in parallel to each other between a first end of the first capacitor and the gate, and a second resistor and a second diode are coupled in parallel to each other between a first end of the second capacitor and the gate.
Abstract:
A method for driving a display panel to produce an efficient sustain discharge is provided. In one embodiment, the display panel includes a plurality of scanning electrodes that are driven by a sustain discharge signal. A corresponding plurality of common electrode groups is driven individually by different sustain discharge signals. Sustain discharge is performed by alternately applying high level sustain pulses to each the plurality of scanning electrodes and each the plurality of common electrode groups. Sustain pulses with a high level are applied sequentially to each the plurality of common electrode groups in time intervals between the sustain pulses with the high level applied to the plurality of scanning electrodes. Therefore, it is possible to maintain a duty rate of a sustain discharge signal near 50% while reducing a peak value of currents generated upon sustain discharge driving, thereby achieving stable sustain discharge.
Abstract:
Disclosed is a PDP driving method which may include generating subfield information that shows ON/OFF states of discharge cells from among a plurality of subfields from input image signals, generating address information that shows ON/OFF states of the discharge cells per subfield from the subfield data, counting the number of the discharge cells that are ON from among the discharge cells from the address data, and controlling a waveform applied during a reset period of a subsequent subfield.
Abstract:
A plasma display panel (PDP) driving method and a PDP gray-representing method for improving representation performance of low gray scales is disclosed. A voltage rising from a low level voltage to a reset voltage of a reset period of a subsequent subfield is applied to a scan electrode, without having a sustain period, after performing an address operation of the subfield with the minimum weight. The discharge cell selected in the address period of the minimum weight is discharged in an initial part of the gradually rising voltage.
Abstract:
A plasma display device includes a plasma display panel (PDP) and a driving method for driving the PDP. The PDP includes discharge cells that are formed by scan electrodes, sustain electrodes, and address electrodes. The driving method divides a frame of the plasma display panel into a plurality of subfields having respective weights in which gray scales are represented by a combination of the subfields. The plurality of subfields are divided into a first group and a second group. In an address period of a subfield of the first having a lowest weight subfield of the plurality of subfields, the method applies a scan voltage and an address voltage respectively to the scan electrode and the address electrode of a discharge cell to be selected from the discharge cells. The scan voltage is applied to the scan electrode and the scan electrode is floated.
Abstract:
A plasma display panel (PDP) driving method and a PDP gray-representing method for improving representation performance of low gray scales is disclosed. A voltage rising from a low level voltage to a reset voltage of a reset period of a subsequent subfield is applied to a scan electrode, without having a sustain period, after performing an address operation of the subfield with the minimum weight. The discharge cell selected in the address period of the minimum weight is discharged in an initial part of the gradually rising voltage.
Abstract:
A method for driving a discharge display panel provides at least a first type sub-filed and a second type sub-field that are used alternately over the span of at least a sub-field. The first type sub-field sequentially includes an addressing time for a first display electrode-line group, a display-sustain time for the first display electrode-line group, an addressing time for a second display electrode-line group, and a display-sustain time for the first display electrode-line group and the second display electrode-line group. Each of the second type sub-fields sequentially includes an addressing time for a second display electrode-line group, a display-sustain time for the second display electrode-line group, an addressing time for the first display electrode-line group, and a display-sustain time for the first display electrode-line group and the second display electrode-line group.
Abstract:
A plasma display device includes a plasma display panel (PDP) and a driving method for driving the PDP. The PDP includes discharge cells that are formed by scan electrodes, sustain electrodes, and address electrodes. The driving method divides a frame of the plasma display panel into a plurality of subfields having respective weights in which gray scales are represented by a combination of the subfields. The plurality of subfields are divided into a first group and a second group. In an address period of a subfield of the first having a lowest weight subfield of the plurality of subfields, the method applies a scan voltage and an address voltage respectively to the scan electrode and the address electrode of a discharge cell to be selected from the discharge cells. The scan voltage is applied to the scan electrode and the scan electrode is floated.