Abstract:
A magnetic field sensor includes at least one magnetic field sensing element configured to generate a measured magnetic field signal responsive to an external magnetic field and to generate a reference magnetic field signal responsive to a reference magnetic field and a calibration circuit configured to divide the measured magnetic field signal by the reference magnetic field signal to generate a calibrated magnetic field signal. The calibrated signal has reduced susceptibility to stress influences.
Abstract:
Systems and methods for sensing position of a magnetic target are disclosed. In embodiments, three magnetic field sensing elements are arranged equidistantly from each other to define a plane and a central axis perpendicular to the plane. The magnetic field sensing elements are configured to generate a respective output signal representing proximity of a magnetic target that is proximate to the central axis and capable of moving relative to the central axis. A processor circuit is coupled to receive output signals from each of the sensors and configured to calculate a position of the magnetic target relative to the plane.
Abstract:
Novel anisotropic magneto-resistive (AMR) sensor architectures and techniques for fabricating same are described. In some embodiments, AMR sensors having barber pole structures disposed below corresponding AMR sensing elements are provided. AMR sensors having segmented AMR sensing elements are also described. Fabrication techniques that can be used to fabricate such sensors are also described. Fabrication techniques are also described that can reduce the risk of contamination during AMR sensor fabrication.