摘要:
A multi-segment parallel wire capacitor includes substantially identical multiple capacitor segments fabricated on a semiconductor substrate. Each segment comprises at least first and second interleaved metal finger formed in a first metal layer above the substrate and third and fourth interleaved metal fingers formed in a second metal layer. The first and fourth sets are connected together to form one plate of the capacitor and the second and third sets are connected to form a second plate. The multiple capacitor segments are arranged in a matrix having M rows and N columns. The multiple capacitor segments are inter-connected in such a manner that the capacitor segments in each column of the matrix are connected in parallel. First and second metal lines selectively connect the plates of the different capacitor segments in the first and last rows and serve as the two opposite terminals of the multi-segment parallel wire capacitor.
摘要:
Integrated circuit varactors and methods for varactor fabrication are provided. Varactors are formed on integrated circuits that contain complementary metal-oxide-semiconductor (CMOS) transistors. The same semiconductor fabrication process steps are used to form both the varactors and CMOS transistors, thereby eliminating potentially cost-prohibitive changes to manufacturing process flows. Varactor performance is enhanced by including a deep n-well structure. The deep n-well reduces sheet resistance in the semiconductor portion of the varactor and improves the varactor's quality factor. The deep n-well is formed from the same deep n-well layer that is used to form the CMOS transistors on the integrated circuit. The varactor has two active electrodes. The electrodes are spaced farther apart than specified by semiconductor fabrication design rules. The number of contact vias used in one of the electrodes is less than the maximum specified by the design rules.
摘要:
In one embodiment, a buried-channel transistor is fabricated by masking a portion of an active region adjacent to a trench and implanting a dopant in an exposed portion of the active region to adjust a threshold voltage of the transistor. By masking a portion of the active region, the dopant is substantially prevented from getting in a region near an edge of the trench. Among other advantages, this results in reduced leakage current.
摘要:
A method of making a semiconductor structure includes sealing a gate layer by wet oxidation. The gate layer is on a substrate containing isolation regions. Semiconductor devices prepared from the semiconductor structure exhibits reduced inverse narrow width effects.
摘要:
A method of making a semiconductor structure includes sealing a gate layer by wet oxidation. The gate layer is on a substrate containing isolation regions. Semiconductor devices prepared from the semiconductor structure exhibits reduced inverse narrow width effects.
摘要:
A method for forming a gap in a silicon layer is described. A silicon layer is formed over a substrate. A nitride layer is formed over the silicon layer and an oxide layer is formed over the silicon layer, adjacent to the nitride layer. A portion of the oxide layer is then removed to form an exposed region of the silicon layer. Then an etchant is applied to the exposed region to form an gap of the silicon layer.