Abstract:
An electronic device may have structures that are coupled together using conductive adhesive such as anisotropic conductive film and other adhesives. The structures that are coupled together may include a touch sensor structure formed from electrodes on the inner surface of a display cover layer, a display module having display layers such as a thin-film transistor layer, and circuitry mounted on substrates such as printed circuits. Conductive signal path structures may be used in routing signals within the electronic device. The conductive signal path structures may be formed from pins that are embedded within injection molded plastic, from metal traces such as laser-deposited metal traces that are formed on the surface of a plastic member or other dielectric, from metal structures that run within channels in a plastic, printed circuit traces, and other signal path structures.
Abstract:
An electronic device is provided with a display and a display-integrated light sensor. The display includes a transparent cover layer, light-generating layers, and a touch-sensitive layer. The display-integrated light sensor is interposed between the transparent cover layer and a display layer such as the touch-sensitive layer or a thin-film transistor layer of the light-generating layers. The light-generating layers include a layer of organic light-emitting material. The display-integrated light sensor can be implemented as an ambient light sensor or a proximity sensor. The display-integrated light sensor may be a packaged light sensor that is integrated into the display layers of the display or may be formed from light-sensor components formed directly on a display circuitry layer such as the touch-sensitive layer or the thin-film transistor layer.
Abstract:
Apparatus, systems and methods for shock mounting glass for an electronic device are disclosed. The glass for the electronic device can provide an outer surface for at least a portion of a housing for the electronic device. In one embodiment, the shock mounting can provide a compliant interface between the glass and the electronic device housing. In another embodiment, the shock mounting can provide a mechanically actuated retractable. For example, an outer glass member for an electronic device housing can be referred to as cover glass, which is often provided at a front surface of the electronic device housing.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
A device including a mechanical input and a touch-sensitive surface for detecting one or more touch inputs and an input from the mechanical input. The touch-sensitive surface can include a first portion for detecting at least the touch inputs, and a second portion for detecting at least the mechanical input. The touch-sensitive surface can include a first portion for detecting at least the touch inputs and the mechanical input. The mechanical input can comprise an electrically conductive material, and the mechanical input can be detected based on capacitance measurements between the mechanical input and the touch-sensitive surface. The device can include a sensing element, the mechanical input can comprise an electrically insulating material, and the mechanical input can be detected based on capacitance measurements between the touch-sensitive surface and the sensing element. The device can include logic to differentiate between the touch inputs and the mechanical input.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
A power source is configured to supply power to one or more components of an electronic device. A processing device that is in communication with the power source can be configured to determine an estimated power requirement of the mobile electronic device during a time period, to determine a charge state of the power source, and to produce an indication of the remaining use time of the electronic device based on the estimated power requirement and the charge state of the power source.