摘要:
Disclosed is a phase change ink composition and a method for forming the ink composition. The phase change ink composition comprises (1) an ink carrier comprising (A) a first component which comprises a monoester wax or blend of monoesters having at least one alkyl group comprising at least 10 carbon atoms, and (B) a second component which comprises a polyalkylene wax, and (2) a urea gellant and (3) a colorant.
摘要:
Disclosed is an ink carrier comprising (A) an antioxidant mixture comprising (a) a hindered phenol antioxidant, and (b) a hindered amine antioxidant, (B) a polyalkylene wax, (C) a functional wax, and (D) an ester-terminated amide. The low polarity ink carrier is substantially resistant to phase separation, has excellent thermal stability, resists autocatalytic degradation of the ink composition and a substantial color shift upon standing, and provides enhanced humidity resistance. This ink carrier can be combined with a colorant to produce an ink composition.
摘要:
Pre-treatment compositions include organic liquids and cross-linking initiators. Pre-treatment compositions are included in ink sets that also include oil-based ink compositions. Oil-based ink compositions include organic liquids, unsaturated fatty materials having terminal polar functional groups, colorants, and metal salts. Methods for ink-jet printing use pre-treatment compositions and oil-based ink compositions.
摘要:
Pre-treatment compositions include organic liquids and cross-linking initiators. Pre-treatment compositions are included in ink sets that also include oil-based ink compositions. Oil-based ink compositions include organic liquids, unsaturated fatty materials having terminal polar functional groups, colorants, and metal salts. Methods for ink-jet printing use pre-treatment compositions and oil-based ink compositions.
摘要:
Disclosed is an organic phase change carrier and a method for forming same, and a phase change ink including same. The organic phase change carrier comprises a colloidal dispersion of nanoparticles exhibiting a substantially uniform distribution of said nanoparticles discretely distributed therewithin, at least one curable monomer; a phase change inducing component, and an initiator. The organic phase change carrier exhibits a substantially uniform distribution of the nanoparticles so that they are discretely distributed therewithin, and are substantially resistant to the aggregation of the nanoparticles distributed therewithin.
摘要:
Ink compositions that includes one or more radiation curable oil soluble components and one or more thermal solvents are provided, as well as methods of preparing such ink compositions and methods of using such ink compositions are provided.
摘要:
Disclosed are phase change inks comprising a phase change ink carrier and a trans-1,2-cyclohexane bis(urea-urethane) compound of the formula or mixtures thereof, wherein R1 and R′1 each, independently of the other, is an alkylene group, an arylene group, an arylalkylene group, or an alkylarylene group, R2 and R′2 each, independently of the other, is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, R3 and R′3 each, independently of the other, is a hydrogen atom or an alkyl group, R4 and R′4 each, independently of the other, is a hydrogen atom, a fluorine atom, an alkyl group, or a phenyl group, n is an integer of 0, 1, 2, 3, or 4, and R5 is an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, or a substituent other than an alkyl, aryl, arylalkyl, or alkylaryl group.
摘要:
Compounds of the formulae wherein Z is OR1, SR1, or NR1R2, Y is OR3, SR3, or NR3R4, at least one of R1, R2, R3, R4, R5, and R6 is hydrogen, at least one of R1, R2, R3, R4, R5, and R6 is other than hydrogen, at least one Z or Y within the compound is NR1R2 or —NR3R4, R1, R2, R3, R4, R5, R6, and R7 each, independently of the others, is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, and wherein R7 can also be (vi) an alkoxy, aryloxy, arylalkyloxy, alkylaryloxy, polyalkyleneoxy, polyaryleneoxy, polyarylalkyleneoxy, polyalkylaryleneoxy, silyl, siloxane, polysilylene, polysiloxane, or wherein X is a direct bond, oxygen, sulfur, NR40— wherein R40 is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, or CR50R60— wherein R50 and R60 each, independently of the other, is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, and wherein R6 can also be
摘要翻译:其中Z为OR 1,SR 1或NR 1 R 2的下式化合物,其中Y为OR R 3,R 3,或NR 3 R 4,R 1,R 3, R 2,R 3,R 3,R 4,R 5和R 6, / SUB>是氢,R 1,R 2,R 3,R 4, R 5和R 6不是氢,化合物中至少一个Z或Y是NR 1 R 2, 或者-NR 3 R 4,R 1,R 2,R 3, R 3,R 4,R 5,R 6和R 7各自独立地选自 其中R 7也可以是(vi)烷氧基,芳氧基,芳基烷氧基,烷芳基氧基,聚亚烷基氧基,聚亚芳基氧基,聚芳基亚烷基氧基,聚烷基亚芳基氧基,甲硅烷基,硅氧烷 ,聚亚硅烷基,聚硅氧烷,或其中X是直接键,氧,硫,NR 40 - 其中R 40是氢,烷基,芳基,芳烷基或烷基芳基,或其中R 50是氢, 各自独立地为氢,烷基,芳基,芳基烷基或烷基芳基,并且其中R 6也可以是
摘要:
The present invention relates to an ink composition including water, a solvent, a solvent-soluble dye, and a surfactant, where the ink exhibits a stable liquid microemulsion phase at a first temperature and a second temperature higher than the first temperature and has a conductivity of at most about 200 μS/cm and a dielectric constant of at least about 60, and methods of making such ink compositions. The present invention also relates to a method of making an ink composition for use in a microelectromechanical system-based fluid ejector. The method involves providing a solution or dispersion including a dye or a pigment and adding to the solution or dispersion an additive which includes a material that enhances dielectric permittivity and/or reduces conductivity under conditions effective to produce an ink composition having a conductivity of at most about 200 μS/cm and a dielectric constant of at least about 60.
摘要:
Disclosed are compounds of the formulae wherein Z is a group of the formula —OR1, a group of the formula —SR1, or a group of the formula —NR1R2, Y is a group of the formula —OR3, a group of the formula —SR3, or a group of the formula —NR3R4, n is an integer representing the number of repeat —(CH2)— or —(CH2CH2O)— units, wherein, provided that at least one of R1, R2, R3, R4, R5, and R6 is a hydrogen atom, provided that at least one of R1, R2, R3, R4, R5, and R6 is other than a hydrogen atom, and provided that at least one Z or Y within the compound is a group of the formula —NR1R2 or a group of the formula —NR3R4, R1, R2, R3, R4, R5, R6, and R7 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, and wherein R7 can also be (vi) an alkoxy group, (vii) an aryloxy group, (Viii) an arylalkyloxy group, (ix) an alkylaryloxy group, (x) a polyalkyleneoxy group, (xi) a polyaryleneoxy group, (xii) a polyarylalkyleneoxy group, (xiii) a polyalkylaryleneoxy group, (xiv) a silyl group, (xv) a siloxane group, (xvi) a polysilylene group, (xvii) a polysiloxane group, or (xviii) a group of the formula wherein r is an integer representing a number of repeat —CH2— groups, wherein s is an integer representing a number of repeating —CH2— groups, and wherein X is (a) a direct bond, (b) an oxygen atom, (c) a sulfur atom, (d) a group of the formula —NR40— wherein R40 is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, or (e) a group of the formula —CR50R60— wherein R50 and R60 each, independently of the other, is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, or on alkylaryl group, and wherein R6 can also be Also disclosed are phase change ink compositions comprising a colorant and a phase change ink carrier comprising a material of this formula.