Abstract:
Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.
Abstract:
Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
Abstract:
Apparatus and methods for training and controlling of e.g., robotic devices. In one implementation, a robot may be utilized to perform a target task characterized by a target trajectory. The robot may be trained by a user using supervised learning. The user may interface to the robot, such as via a control apparatus configured to provide a teaching signal to the robot. The robot may comprise an adaptive controller comprising a neuron network, which may be configured to generate actuator control commands based on the user input and output of the learning process. During one or more learning trials, the controller may be trained to navigate a portion of the target trajectory. Individual trajectory portions may be trained during separate training trials. Some portions may be associated with robot executing complex actions and may require additional training trials and/or more dense training input compared to simpler trajectory actions.
Abstract:
Framework may be implemented for transferring knowledge from an external agent to a robotic controller. In an obstacle avoidance/target approach application, the controller may be configured to determine a teaching signal based on a sensory input, the teaching signal conveying information associated with target action consistent with the sensory input, the sensory input being indicative of the target/obstacle. The controller may be configured to determine a control signal based on the sensory input, the control signal conveying information associated with target approach/avoidance action. The controller may determine a predicted control signal based on the sensory input and the teaching signal, the predicted control conveying information associated with the target action. The control signal may be combined with the predicted control in order to cause the robotic apparatus to execute the target action.
Abstract:
Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.
Abstract:
Systems and methods for optimizing robotic route planning are disclosed in relation to autonomous navigation of sharp turns, narrow passageways, and/or a sharp turn into a narrow passageway. Robots navigating a route comprising any of the above run the risk of colliding with environment obstacles when executing these maneuvers. Accordingly, systems and methods for improving robotic route planning are necessary within the art and are disclosed herein.
Abstract:
Systems and methods for training a robot to autonomously travel a route. In one embodiment, a robot can detect an initial placement in an initialization location. Beginning from the initialization location, the robot can create a map of a navigable route and surrounding environment during a user-controlled demonstration of the navigable route. After the demonstration, the robot can later detect a second placement in the initialization location, and then autonomously navigate the navigable route. The robot can then subsequently detect errors associated with the created map. Methods and systems associated with the robot are also disclosed.
Abstract:
Apparatus and methods for training and operating of robotic devices. Robotic controller may comprise a predictor apparatus configured to generate motor control output. The predictor may be operable in accordance with a learning process based on a teaching signal comprising the control output. An adaptive controller block may provide control output that may be combined with the predicted control output. The predictor learning process may be configured to learn the combined control signal. Predictor training may comprise a plurality of trials. During initial trial, the control output may be capable of causing a robot to perform a task. During intermediate trials, individual contributions from the controller block and the predictor may be inadequate for the task. Upon learning, the control knowledge may be transferred to the predictor so as to enable task execution in absence of subsequent inputs from the controller. Control output and/or predictor output may comprise multi-channel signals.
Abstract:
Apparatus and methods for training and controlling of e.g., robotic devices. In one implementation, a robot may be utilized to perform a target task characterized by a target trajectory. The robot may be trained by a user using supervised learning. The user may interface to the robot, such as via a control apparatus configured to provide a teaching signal to the robot. The robot may comprise an adaptive controller comprising a neuron network, which may be configured to generate actuator control commands based on the user input and output of the learning process. During one or more learning trials, the controller may be trained to navigate a portion of the target trajectory. Individual trajectory portions may be trained during separate training trials. Some portions may be associated with robot executing complex actions and may require additional training trials and/or more dense training input compared to simpler trajectory actions.
Abstract:
Systems and methods for initializing a robot to autonomously travel a route are disclosed. In some exemplary implementations, a robot can detect an initialization object and then determine its position relative to that initialization object. The robot can then learn a route by user demonstration, where the robot associates actions along that route with positions relative to the initialization object. The robot can later detect the initialization object again and determine its position relative to that initialization object. The robot can then autonomously navigate the learned route, performing actions associated with positions relative to the initialization object.