Abstract:
Radiating elements include a conductive patch having first and second slots that each extend along a first axis and third and fourth slots that each extend along a second axis that is perpendicular to the first axis, a feed network that includes first through fourth feed lines, each feed line crossing a respective one of the first through fourth slots, and a conductive ring that at least partially surrounds the periphery of the conductive patch and that encloses each of the first through fourth slots.
Abstract:
Base station antennas are provided herein. A base station antenna includes consecutive first, second, third, and fourth columns of radiating elements that are configured to transmit in a first frequency band. In some embodiments, the first and third columns are further configured to transmit in a second frequency band that is different from the first frequency band as a first MIMO pair, and the second and fourth columns are further configured to transmit in the second frequency band as a second MIMO pair. Additionally or alternatively, in some embodiments, the first and second columns are fed together and are further configured to transmit in a second frequency band as a first MIMO pair, and the third and fourth columns are fed together and are further configured to transmit in the second frequency band as a second MIMO pair. Related methods of operation are also provided.
Abstract:
A radiating element for a base station antenna includes a first dipole radiator that has a first dipole arm that has a front surface and first and second extensions that project rearwardly from respective side edges of the front surface of the first dipole arm; a second dipole radiator that has a second dipole arm that has a front surface and first and second extensions that project rearwardly from respective side edges of the front surface of the second dipole arm; and a parasitic element having a first conductive segment that is configured to capacitively couple to the first extension of the first dipole arm, a second conductive segment that is configured to capacitively couple to the second extension of the second dipole arm, and a third conductive segment that electrically connects the first conductive segment to the second conductive segment.
Abstract:
Antenna arrays may include a first plurality of radiating elements responsive to respective pairs of first radio frequency signals and a second plurality of radiating elements responsive to respective pairs of second radio frequency signals. A shared radiating element is also provided, which is responsive to a corresponding pair of first radio frequency signals and a corresponding pair of second radio frequency signals. This shared radiating element may be equivalent in configuration to the first and second pluralities of radiating elements, or may have a unique configuration relative to the first and second pluralities of radiating elements. The first plurality of radiating elements and the second plurality of radiating elements can be aligned as respective first and second spaced-apart and collinear columns of radiating elements, with the shared radiating element disposed about equidistant between the first and second columns.
Abstract:
A multiband radiating array according to the present invention includes a vertical column of lower band dipole elements and a vertical column of higher band dipole elements. The lower band dipole elements operate at a lower operational frequency band, and the lower band dipole elements have dipole arms that combine to be about one half of a wavelength of the lower operational frequency band midpoint frequency. The higher band dipole elements operate at a higher frequency band, and the higher band dipole elements have dipole arms that combine to be about three quarters of a wavelength of the higher operational frequency band midpoint frequency. The higher band radiating elements are supported above a reflector by higher band feed boards. A combination of the higher band feed boards and higher band dipole arms do not resonate in the lower operational frequency band.
Abstract:
A test fixture for testing performance of a trimmed cable and/or antenna components. The test fixture may be connected without the use of solder allowing for accurate testing or tuning of one or more the antenna components.
Abstract:
An antenna includes a radiator that is electrically coupled to a feed stalk having a common-mode rejection (CMR) filter therein. The CMR filter is configured to suppress common mode radiation from the radiator by providing a frequency dependent impedance to a pair of common mode currents within the feed stalk, which is sufficient to increase a return loss associated with the pair of common mode currents to a level of greater than −6 dB across a frequency range including a frequency of the common mode radiation.
Abstract:
A base station antenna includes first and second RF ports, a first array of radiating elements that are configured to transmit and receive RF signals in a first operating frequency band, where each of the radiating elements in the first array is coupled to the first RF port, and a second array of radiating elements that are configured to transmit and receive RF signals in a second (higher) operating frequency band, where each of the radiating elements in the second array is coupled to the second RF port. A first of the radiating elements in the first array includes a first dipole radiator that has a center-fed first dipole arm that comprises a first conductor, where at least a first portion of the first conductor has a helix-shape.
Abstract:
Base station antennas include at least one passive internal grid reflector with an array of low band radiating elements projecting forward of a front one of the at least one grid reflector. A mMIMO antenna array resides behind a back one of the at least one grid reflector and is configured to transmit signal through the grid reflector and out a front radome of the base station antenna.
Abstract:
A base station antenna includes a radome having a bottom opening, an antenna assembly within the radome, a bottom end cap covering the bottom opening of the radome, the bottom end cap including a plurality of connector receptacles, and a plurality of connectors mounted in respective ones of the connector receptacles, each connector including a connector port that extends downwardly from the bottom end cap. Longitudinal axes of a first subset of the connectors extend at respective oblique angles with respect to a plane that is normal to a longitudinal axis of the antenna.