摘要:
An implantable cardiac stimulation device provides capture of a chamber of a heart with pacing pulses while minimizing parasitic muscle tissue stimulation. A parasitic muscle stimulation detector detects if the application of pacing pulses result in parasitic muscle stimulation. If there is parasitic muscle stimulation resulting from the application of pacing pulses, a pulse generator control adjusts the pacing pulse amplitudes and durations until the pacing pulses capture the chamber of the heart without causing parasitic muscle stimulation.
摘要:
To permit remote programming of implantable cardiac stimulation devices such as pacemakers, a central device programmer is provided in conjunction with a network of remote telemetry units for use in patient homes or in remote clinics. To reprogram a device implanted within a patient, a physician enters programming commands within the central programmer which relays the programming commands to a remote telemetry unit in proximity to the patient. The remote telemetry unit, in turn, forwards the programming commands to the implanted device. In this manner, the patient need not return to the physician for reprogramming of the device. Remote telemetry units may be provided within patient homes, clinics, hospital emergency rooms, hospital patient rooms, and the like. Depending upon the implementation, different levels of programmability may be permitted depending upon the degree of supervision of the patient. For an unsupervised patient, limited programmability is permitted. For a nurse-supervised patient, a greater degree of programmability is permitted. Finally, for a physician-supervised patient, a full range of programmability is permitted. In a specific example described herein, each remote telemetry unit includes minimal hardware and software components necessary to relay programming commands, diagnostic information, and other signals between the central programmer and the implanted device.
摘要:
A method and system for analyzing and displaying pacing event data of an implantable pacemaker using a programmer device comprises downloading the pacing event data from the implantable pacemaker to the programmer device and processing the pacing event data to produce an Event Record. The Event Record includes actual pacing event data obtained and stored by the implantable pacemaker over a prescribed period of time as well as various statistical information derived therefrom. Selected parametric data of the Event Record are then displayed to the physician or other user on a display screen of the programmer device in a simple and comprehensible graphical format.
摘要:
An implantable pacemaker continuously records pacing events and their respective rates of occurrence in sequence, as they occur, into an Event Record stored in a circular buffer. The circular buffer always contains the most recent events and rates collected. The recording of the pacing events selectively occurs at every event, or at sampling rates of one event per fixed sample interval. A programming device, coupled to the implantable pacemaker through a telemetry link, selectively retrieves the recorded pacing events and rates from the Event Record and reports subsets thereof in condensed or summarized form using numerical and/or graphical formats. The pacing event data collected in the Event Record is three-dimensional in that each pacing event includes a pacemaker event, an associated pacemaker or heart rate, and a real time interval. The programming device also calculates and reports statistical information from the data collected in the Event Record. The Event Record provides a base recording that establishes the behavior of the pacemaker in a particular patient under ascertainable conditions.
摘要:
A programmable offset is added to an automatically generated baseline reference value to provide a Threshold value used by the rate-responsive sensor processing circuits of an implantable rate-responsive pacemaker to determine the significance of a sensor input signal. The rate-responsive pacemaker provides stimulation pulses on demand at a pacing rate determined by a sensed physiological parameter. The physiological parameter is sensed by a physiological sensor included within, or coupled to, the rate-responsive pacemaker. The physiological sensor generates a sensor input signal having a magnitude that varies as a function of the sensed physiological parameter. The invention provides a way for the rate-responsive pacemaker, when operating in an autothreshold mode, to automatically determine when the magnitude of the sensor input signal is sufficiently large to justify an increase in the pacing rate. A long-term running average of the sensor input signal is continuously maintained, and is used as a baseline threshold value. A programmable offset is added to the baseline reference value. Any sensor input signal that exceeds the baseline reference value plus the programmable offset is considered to be sufficiently large to effect an increase in the pacing rate.
摘要:
An autocapture system within an implantable pulse generator automatically maintains the energy of a stimulation pulse at a level just above that which is needed to effectuate capture. The electrical post-stimulus signal of the heart following delivery of a stimulation pulse is compared to a polarization template, determined during a capture verification test. A prescribed difference between the polarization template and the post-stimulus signal indicates capture has occurred. Otherwise, loss of capture is presumed, and a loss-of-capture routine is invoked that increases the energy a prescribed amount to obtain capture. Periodically, and/or at programmed intervals or events, the capture verification test is performed. During the capture verification test, the pulse generator determines a polarization template for a particular stimulation energy and for each of a plurality of sensitivity or threshold settings. A determination is also made as to which sensitivity settings yield capture. An autocapture routine extends the capture verification test data to a wide range of stimulation energies. An autothreshold routine automatically sets the energy of the stimulation pulse a specified level above the energy at which capture is first lost.
摘要:
A rate-response pacemaker includes a plurality of sensors that each sense a physiologic-related parameter suggestive of the physiological needs of a patient, and hence, indicative of the pacing rate at which the rate-responsive pacemaker should provide pacing pulses on demand. The pacemaker includes appropriate selection circuitry for selecting which of the sensor parameters, or weighted combinations thereof, should be used as the sensor indicated rate (SIR) signal to control the pacing rate of the pacemaker at any given time. The pacemaker also includes a memory circuit for selectively storing the sensor parameters from each of the plurality of sensors. The stored sensor parameters may thereafter be downloaded from the pacemaker memory and evaluated in non-real time with the various sensor parameters assuming different weighting (scaling) factors and different processing parameters (e.g., filtering), thereby allowing an optimum combination of the sensor parameters to be determined without requiring repeated trials by the patient.
摘要:
A method and system for monitoring the behavior of an implanted pacemaker counts (records) the number of times that a given internal event or state change of the pacemaker occurs, and also determines the rate at which each event or state change thus counted occurs. The event counts and their associated rate are stored (recorded) in appropriate memory circuits housed within the pacemaker device. At an appropriate time, the stored event count and rate data are downloaded to an external programming device. The external programming device processes the event count and rate data, and displays a distribution of the event count data as a function of its rate of occurrence, as well as other statistical information derived therefrom. The displayed information, and its associated statistical information, allows a baseline recording to be made that establishes the implanted pacemaker's behavior for a given patient under known conditions. Such baseline recording of event counts in combination with the associated rate of occurrence of such event counts provides significant insight into the past behavior of the pacemaker as implanted in a particular patient. The past behavior of the pacemaker, in turn, may then be used to predict with a high degree of accuracy the future behavior of the pacemaker.
摘要:
In a beverage dispenser of the type including portion control dispensing, the improvement wherein the portion control circuit includes a microprocessor based timer programmed to provide a primary pour cycle and then one or more topping off pour cycles after a wait period of time after termination of the primary pour cycle.
摘要:
A measurement light detector detects light transmitted by a light source of an implantable system that is scattered back into an implantable housing, and produces a measurement signal indicative of the intensity of the light detected by the measurement light detector. A calibration light detector detects a portion of the transmitted light that has not exited the housing, and produces a calibration signal that is indicative of the intensity of the light detected by the calibration light detector, which is indicative of the intensity of the light transmitted by the light source. Changes in the intensity of the transmitted light are compensated for based on the calibration signal produced by the calibration light detector. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.