SELF-CONTRASTIVE LEARNING FOR IMAGE PROCESSING

    公开(公告)号:US20230138380A1

    公开(公告)日:2023-05-04

    申请号:US17513493

    申请日:2021-10-28

    Abstract: A neural network system implements a model for generating an output image based on a received input image. The model is learned through a training process during which parameters associated with the model are adjusted so as to maximize a difference between a first image predicted using first parameter values of the model and a second image predicted using second parameter values of the model, and to minimize a difference between the second image and a ground truth image. During a first iteration of the training process the first image is predicted and during a second iteration the second image is predicted. The first parameter values are obtained during the first iteration by minimizing a difference between the first image and the ground truth image, and the second parameter values are obtained during the second iteration by maximizing the difference between the first image and the second image.

    IMAGE REGISTRATION
    83.
    发明申请

    公开(公告)号:US20230079164A1

    公开(公告)日:2023-03-16

    申请号:US17475534

    申请日:2021-09-15

    Abstract: Deep learning based systems, methods, and instrumentalities are described herein for registering images from a same imaging modality and different imaging modalities. Transformation parameters associated with the image registration task are determined using a neural ordinary differential equation (ODE) network that comprises multiple layers, each configured to determine a respective gradient update for the transformation parameters based on a current state of the transformation parameters received by the layer. The gradient updates determined by the multiple ODE layers are then integrated and applied to initial values of the transformation parameters to obtain final parameters for completing the image registration task. The operations of the ODE network may be facilitated by a feature extraction network pre-trained to determine content features shared by the input images. The input images may be resampled into different scales, which are then processed by the ODE network iteratively to improve the efficiency of the ODE operations.

    MOTION ARTIFACTS SIMULATION
    84.
    发明申请

    公开(公告)号:US20220392018A1

    公开(公告)日:2022-12-08

    申请号:US17340635

    申请日:2021-06-07

    Abstract: Motion contaminated magnetic resonance (MR) images for training an artificial neural network to remove motion artifacts from the MR images are difficult to obtain. Described herein are systems, methods, and instrumentalities for injecting motion artifacts into clean MR images and using the artificially contaminated images for machine learning and neural network training. The motion contaminated MR images may be created based on clean source MR images that are associated with multiple physiological cycles of a scanned object, and by deriving MR data segments for the multiple physiological cycles based on the source MR images. The MR data segments thus derived may be combined to obtain a simulated MR data set, from which one or more target MR images may be generated to exhibit a motion artifact. The motion artifact may be created by manipulating the source MR images and/or controlling the manner in which the MR data set or the target MR images are generated.

    SYSTEMS AND METHODS FOR GENERATING BULLSEYE PLOTS

    公开(公告)号:US20220122259A1

    公开(公告)日:2022-04-21

    申请号:US17076641

    申请日:2020-10-21

    Abstract: A bullseyes plot may be generated based on cardiac magnetic resonance imaging (CMRI) to facilitate the diagnosis and treatment of heart diseases. Described herein are systems, methods, and instrumentalities associated with bullseyes plot generation. A plurality of myocardial segments may be obtained for constructing the bullseye plot based on landmark points detected in short-axis and long-axis magnetic resonance (MR) slices of the heart and by arranging the short-axis MR slices sequentially in accordance with the order in which the slices are generated during the CMRI. The sequential order of the short-axis MR slices may be determined utilizing projected locations of the short-axis MR slices on a long-axis MR slice and respective distances of the projected locations to a landmark point of the long-axis MR slice. The myocardium and/or landmark points may be identified in the short-axis and/or long-axis MR slices using artificial neural networks.

    ATTENTION-DRIVEN IMAGE DOMAIN TRANSLATION

    公开(公告)号:US20210386391A1

    公开(公告)日:2021-12-16

    申请号:US16902760

    申请日:2020-06-16

    Abstract: An apparatus is configured to receive input image data corresponding to output image data of a first radiology scanner device, translate the input image data into a format corresponding to output image data of a second radiology scanner device and generate an output image corresponding to the translated input image data on a post processing imaging device associated with the first radiology scanner device. Medical images from a new scanner can be translate to look as if they came from a scanner of another vendor.

Patent Agency Ranking