摘要:
A radiation imaging apparatus is capable of taking a moving picture by acquisition by a reading circuit of a plurality of radiation image signals on the basis of a plurality of successive times of irradiation of a radiation detector with radiation rays. The radiation detector has a two-dimensional array of pixels. In a period between a start of an n-th time of irradiation with radiation rays and a start of an (n+1)-th time of irradiation with radiation rays, where n is a natural number, a controller switches an operation status of an analog-to-digital converter that converts electric signals read by the reading circuit into digital signals so that power consumption of the analog-to-digital converter is reduced.
摘要:
A radiation image pick-up apparatus includes a conversion element, accumulation element, read element, detection element, driving circuit, and controller. The conversion element converts radiation into an electrical signal. The accumulation unit accumulates the electrical signal converted by the conversion element. The read unit reads out the electrical signal accumulated in the accumulation unit. The detection element detects the start and end of irradiation of the radiation. The driving circuit accumulates the electrical signal in the accumulation element responsive to the detection of start of irradiation of the radiation, and drives the read element responsive to the detection of the end of irradiation of the radiation, based on the detection result of the detection element. The controller controls the driving circuit. A radiation image pick-up system is also disclosed.
摘要:
A plurality of correction images are obtained while changing the radiation energy of an incident radiation in the absence of an object. Subsequently, an object image is obtained in the presence of the object by emitting the radiation to the object. Then, the object image is corrected by using a correction image obtained under a radiation energy condition closest to the radiation energy of the obtained object image.
摘要:
In a photoelectric conversion device, in order to suppress alteration of its properties during a long time use, lower the decrease of the S/N ratio due to a dark current output, and shorten image-pickup cycles, MIS type photoelectric conversion elements using an amorphous semiconductor material are connected with an electric power source for applying bias for photoelectric conversion, an electric power for resetting an accumulated electric charge, and a setting point for applying zero bias at the time of non-operation of the element through a switch. Emitted x-rays from an x-ray source, which is a first light source, come into collision against phosphor after being transmitted through an object body to be inspected and then are absorbed in the phosphor to be converted into visible light rays. The visible light rays from the phosphor are radiated to the photoelectric conversion elements. Prior to reading out of the x-ray image, an LED light source is lighted. Switches are used for turning on the x-ray source and the LED light source. In this embodiment, there is a reading-out period and a non-reading-out period; the x-ray source is turned on during the reading-out period, and the LED light source is turned on during the non-reading-out period.
摘要:
It is made possible that, in accordance with a plurality of radiographing modes such as the still image radiographing mode and the moving image radiographing mode, the outputs both in the irradiation period and in the non-irradiation period are made to fall within the dynamic range of the radiographing system, whereby an accurate, high-S/N-ratio X-ray radiographic image is obtained. For that purpose, in accordance with the plurality of radiographing modes, an arithmetic operation unit adjusts a power source to control voltage to be applied to a reading circuit unit or an Analogue-Digital conversion unit, such that, in each of the radiographing modes, both an electric signal in the X-ray irradiation period and an electric signal in the X-ray non-irradiation period fall within the dynamic ranges of the reading circuit unit and the Analogue-Digital conversion unit.
摘要:
A radiographic imaging apparatus includes a radiation detection circuit in which a plurality of conversion elements to convert radiation emitted from a radiation source and transmitted through an object into an electrical signal are arranged two-dimensionally, a driving mechanism which changes a positional relationship between the object and the radiation source and the radiation detection circuit, a memory which stores, as image data, the electrical signal detected by the radiation detection circuit, an imaging control unit which controls the radiation source to change energy of the radiation emitted from the radiation source between radiography of a first frame and radiography of a second frame different from the first frame and controls driving of the driving mechanism in capturing a plurality of continuous radiographic images of the object, and an image processing unit which executes subtraction processing of image data of the first frame and image data of the second frame stored in the memory to generate a processed image and generates a tomographic image or a 3D image of the object by using the processed image.
摘要:
A radiation detector includes radiation detection elements for detecting radiations which have penetrated an object as electric signals, with the elements arranged in a two-dimensional array, and an image display controller for producing a radiation image of the object detected as the electric signals with the radiation detector as continuous images including a plurality of frames. The image display controller switches a tube voltage of a radiation source for emitting the radiations between a first voltage at a time of producing odd images and a second voltage at a time of producing even images and controls a display device to continuously display a plurality of processed images as a dynamic image. Each of the processed images are obtained by performing a subtraction process between an odd image of the odd images and an even image of the even images, wherein the even image is derived in succession to the odd image.
摘要:
An object of this invention is to implement a radiographic apparatus which can stably obtain a moving image at a high speed by suppressing a voltage variation in GND or power supply line and omitting the standby period for each frame. To achieve this object, during a period after electrical signals from conversion elements (S1-1-S1-3) in one control interconnection (G1) are transferred and read for each row by a driving circuit section (SR1) before electrical signals in the next control interconnection are transferred and read, the read-accessed conversion elements are refreshed for each row, thereby eliminating the necessity for preparing a refresh period in acquiring continuous moving images. In addition, since the conversion elements are refreshed for each row, the dark current (transient current) in the refresh mode can be made small as compared to a case wherein all the conversion elements are refreshed at once. With this arrangement, the voltage variation in GND or power supply line is suppressed.
摘要:
An object of this invention is to implement a radiographic apparatus which can stably obtain a moving image at a high speed by suppressing a voltage variation in GND or power supply line and omitting the standby period for each frame. To achieve this object, during a period after electrical signals from conversion elements (S1-1–S1-3) in one control interconnection (G1) are transferred and read for each row by a driving circuit section (SR1) before electrical signals in the next control interconnection are transferred and read, the read-accessed conversion elements are refreshed for each row, thereby eliminating the necessity for preparing a refresh period in acquiring continuous moving images. In addition, since the conversion elements are refreshed for each row, the dark current (transient current) in the refresh mode can be made small as compared to a case wherein all the conversion elements are refreshed at once. With this arrangement, the voltage variation in GND or power supply line is suppressed.
摘要:
An object of this invention is to implement a radiographic apparatus which can stably obtain a moving image at a high speed by suppressing a voltage variation in GND or power supply line and omitting the standby period for each frame. To achieve this object, during a period after electrical signals from conversion elements (S1-1-S1-3) in one control interconnection (G1) are transferred and read for each row by a driving circuit section (SR1) before electrical signals in the next control interconnection are transferred and read, the read-accessed conversion elements are refreshed for each row, thereby eliminating the necessity for preparing a refresh period in acquiring continuous moving images. In addition, since the conversion elements are refreshed for each row, the dark current (transient current) in the refresh mode can be made small as compared to a case wherein all the conversion elements are refreshed at once. With this arrangement, the voltage variation in GND or power supply line is suppressed.