Abstract:
Eliminate or reduce the impact of glare in printed information tag recognition applications using single- and multi-pose external illumination coupled with intelligent processing. A shelf imager can acquire shelf images for printed information tag localization and recognition. An external illuminator can provide at least one illumination condition/pose for shelf image acquisition in addition to lighting associated with the enclosed environment. A glare region of interest (ROI) detector can analyze all or a portion of the acquired shelf images for glare to determine whether additional images need to be acquired using different illumination conditions provided by the single- or multi-pose external illuminator or whether full or portion of acquired images need to be analyzed by a printed information tag locator and recognizer. A printed information tag locator and recognizer can analyze all or a portion of the acquired images to localize and recognize data printed on the printed information tags.
Abstract:
A method and system for reconstructing an image of a scene comprises configuring a digital light modulator according to a spatially varying pattern. Light energy associated with the scene and incident on the spatially varying pattern is collected and optically focused on the photodetectors. Data indicative of the intensity of the focused light energy from each of said at least two photodetectors is collected. Data from the photodetectors is then combined to reconstruct an image of the scene.
Abstract:
Methods and systems for detecting anomalies in transportation related video footage. In an offline training phase, receiving video footage of a traffic location can be received. Also, in an offline training phase, event encodings can be extracted from the video footage and collected or compiled into a training dictionary. One or more input video sequences captured at the traffic location or a similar traffic location can be received in an online detection phase. Then, an event encoding corresponding to the input video sequence can be extracted. The event encoding can be reconstructed with a low rank sparsity prior model applied with respect to the training dictionary. The reconstruction error between actual and reconstructed event encodings can then be computed in order to determine if an event thereof is anomalous by comparing the reconstruction error with a threshold.
Abstract:
A system creates an electronic file corresponding to a printed artifact by launching a video capture module that causes a mobile electronic device to capture a video of a scene that includes the printed artifact. The system analyzes image frames in the video in real time as the video is captured to identify a suitable instance. In one example, the suitable instance is a frame or sequence of frames that contain an image of a page or side of the printed artifact and that do not exhibit a page-turn event. In response to identification of the suitable instance, the system will automatically cause a photo capture module of the device to capture a still image of the printed artifact. The still image has a resolution that is higher than that of the image frames in the video. The system will save the captured still images to a computer-readable file.
Abstract:
A system creates an electronic file corresponding to a printed artifact by launching a video capture module that causes an imaging sensor of a mobile electronic device to capture a video of a scene that includes the printed artifact. The system analyzes image frames in the video in real time as the video is captured to identify a suitable instance. The suitable instance is a frame or sequence of frames that contains at least a portion of the printed artifact and that also satisfies one or more image quality criteria or other criteria. Upon identification of each suitable instance, the system will automatically cause a photo capture module of the device to capture a still image of the printed artifact. The still image has a resolution that is higher than that of the image frames in the video. The system will save the captured still images to a computer-readable file.
Abstract:
Methods, systems, and processor-readable media for video anomaly detection based upon a sparsity model. A video input can be received and two or more diverse descriptors of an event can be computed from the video input. The descriptors can be combined to form an event matrix. A sparse reconstruction of the event matrix can be performed with respect to an over complete dictionary of training events represented by the diverse descriptors. A step can then be performed to determine if the event is anomalous by computing an outlier rejection measure on the sparse reconstruction.
Abstract:
A document presentation system routes a document having sensitive data to various users, wherein the various users have different levels of permission to access the sensitive data. When any user displays the document on a display of an electronic device, the display will show document so that sensitive data is replaced with an augmented reality (AR) marker. The AR marker may include a descriptor of the class of data to which the sensitive data belongs. The system will also display an AR overlay for each AR marker. For each user, the AR overlay for each AR marker will include none, some, or all of the sensitive data corresponding to the AR marker. The amount of the sensitive data that will be displayed will depend on the user's authorization level.
Abstract:
Methods and systems for detecting anomalies in transportation related video footage. In an offline training phase, receiving video footage of a traffic location can be received. Also, in an offline training phase, event encodings can be extracted from the video footage and collected or compiled into a training dictionary. One or more input video sequences captured at the traffic location or a similar traffic location can be received in an online detection phase. Then, an event encoding corresponding to the input video sequence can be extracted. The event encoding can be reconstructed with a low rank sparsity prior model applied with respect to the training dictionary. The reconstruction error between actual and reconstructed event encodings can then be computed in order to determine if an event thereof is anomalous by comparing the reconstruction error with a threshold.
Abstract:
Systems and methods are provided for real time dynamic triggering of a conspicuous signal for a vehicle on a path of travel. A sensor array detects environmental factors presenting a predetermined risk to the vehicle. A decision module assesses the environmental factors and the associated risks and determines if the conspicuousness signal is warranted and a type of signal to be made. An actuating module actuates the conspicuousness signal based on the determining of the decision module.
Abstract:
Methods, systems, and processor-readable media for pruning a training dictionary for use in detecting anomalous events from surveillance video. Training samples can be received, which correspond to normal events. A dictionary can then be constructed, which includes two or more classes of normal events from the training samples. Sparse codes are then generated for selected training samples with respect to the dictionary derived from the two or more classes of normal events. The size of the dictionary can then be reduced by removing redundant dictionary columns from the dictionary via analysis of the sparse codes. The dictionary is then optimized to yield a low reconstruction error and a high-interclass discriminability.