Abstract:
A method of creating a confidence map for an electronic fillable form may include identifying, by an electronic device, one or more fillable fields of an electronic fillable form. The method may include, for one or more of the identified fillable fields, assigning one or more first coordinates of the electronic fillable form to define a graphical zone associated with the fillable field, assigning one or more second coordinates of the electronic fillable form to define a fill zone, assigning one or more third coordinates of the electronic fillable form to define a click zone, and assigning, by the electronic device, one or more fourth coordinates of the electronic fillable form to define a start zone representing a most likely selection area for the fillable field. The method may include creating, a confidence map associated with the electronic fillable form.
Abstract:
A system creates a copy of a document by: receiving an electronic representation a document to be copied onto a substrate; identifying a non-invasive watermark to be printed on the substrate; analyzing the document and the non-invasive watermark to determine whether a threshold amount of the non-invasive watermark can be printed in a white space of the document; and creating a secure copy of the document with the watermark. If the threshold amount of the non-invasive watermark can be printed in the white space, the system will print at least a portion the non-invasive watermark in the white space. Otherwise, the system will modify at least a portion of the non-invasive watermark to comprise an invasive watermark portion, and it will print the invasive watermark portion over a portion of the document's content.
Abstract:
A package design system creates one or more package design files by creating cut line instructions and fold line instructions for a package flat. If the system determines that the package flat should be split into two or more subparts across two or more substrates or two or more sub-regions of a single substrate, it will select a fold line and convert the selected fold line to a seam. Conversion to a seam may occur by creating cut line instructions for the selected fold line, imparting a first set of functional elements on a first side of the seam, and imparting a second set of functional elements on a second side of the seam. The first set of functional elements and the second set of functional elements will form a functional connection when the three-dimensional structure is formed.
Abstract:
A package design system creates one or more package design files by creating cut line instructions and fold line instructions. If the system determines that the package should be split across two or more substrates, it will select a fold line and convert the selected fold line to a seam. Conversion to a seam may occur by creating cut line instructions for the selected fold line, imparting a first set of functional elements on a first side of the seam, and imparting a second set of functional elements on a second side of the seam. The first set of functional elements and the second set of functional elements will form a functional connection when the three-dimensional structure is formed.
Abstract:
Methods and devices identify gloss levels and appearance colors for different printers based on the common printing capabilities of the different printers. Such gloss levels and appearance colors are formed from different combinations of one or more colorant marking materials combined or stacked on a print substrate surface. Further, such methods and devices identify common color metameric pairs based on the gloss levels and the appearance colors. Each of the common color metameric pairs has the same appearance color, but has a different gloss level. Patterns of different gloss levels in an area of uniform appearance color form a differential gloss security feature on a printed document. The methods herein can store a file with the common color metameric pairs in a non-transitory storage medium that is operatively connected to at least one of the different printers.
Abstract:
A processor controls a marking engine to print a uniform region having a visually uniform color for an observer within all areas of the uniform region. The processor also controls the marking engine to print different gloss patterns within the uniform region. The different gloss patterns have first and second gloss regions, and the gloss difference between the first and second gloss regions forms gloss marks. Additionally, the processor controls the marking engine to print different infrared patterns within the uniform region to form infrared marks. In some embodiments, the infrared patterns are only within the first gloss regions and are not within the second gloss regions.