Abstract:
A sensitivity compensation method of a touch input device sensing a touch pressure may be provided. The sensitivity compensation method includes: detecting a capacitance change amount by applying a pressure to a plurality of points defined on a touch sensor panel; generating a raw data for the capacitance change amount of the defined point; generating a decimal value data for each of the sets by dividing a data value within the set by a maximum value within the set; calculating an average value of each defined point; generating a representative value data by calculating a value corresponding to all the points of the touch sensor panel; calculating a balance factor on the basis of the representative value data; and compensating for a touch pressure sensitivity of the touch input device by using the balance factor.
Abstract:
A touch input device capable of detecting a touch pressure may be provided, that includes: a display panel; and a pressure sensing unit which is disposed under the display panel. The pressure sensing unit includes one central pressure sensor for detecting the pressure and a plurality of non-central pressure sensors for detecting the pressure. An area of each of the non-central pressure sensors is less than that of the central pressure sensor.
Abstract:
In one embodiment, a smartphone includes a first cover layer; an LCD panel located under the first cover layer; a backlight unit located under the LCD panel and comprising a reflective sheet and a second cover layer; and a capacitive touch sensor; wherein the backlight unit further comprises a pressure sensor and a spacer layer, the pressure sensor comprising electrodes attached on the second cover layer and spaced apart from the reflective sheet; wherein a touch position is detected by a sensing signal output from the touch sensor; wherein a magnitude of a touch pressure is detected based on a change amount of capacitance that is changed according to a distance between the pressure sensor and an electrode located within the LCD panel; wherein the LCD panel is bent according to the touch; and wherein the capacitance change amount changes as the LCD panel bends.
Abstract:
A smartphone includes: a cover layer; a display module, and comprises a component configured to cause the LCD panel to perform a display function; a pressure electrode which is located under the display module; and a shielding member which is located under the pressure electrode. At least a portion of a touch sensor which senses touch in a capacitive manner is located in the display module.
Abstract:
In one embodiment, a touch input device includes a touch screen and is configured to perform mutually different operations with respect to a first touch and a second touch on the touch screen. The first touch is maintained during a time period equal to or greater than a first time period, wherein the first touch is maintained at a pressure less than a first pressure within the first time period. The second touch has a time interval having a pressure greater than the first pressure within the first time period. The first pressure is controlled and set by an input to the touch screen.
Abstract:
In one embodiment, a touch input device includes a cover layer; a touch sensor; a display panel which is located under the cover layer; a pressure electrode which is located under the display panel; and a first converter which converts a signal comprising information for electrical characteristics outputted from the pressure electrode to a digital signal; wherein a driving signal is applied to the touch sensor and a touch position is detected from a sensing signal which is outputted from the touch sensor; and wherein a magnitude of a touch pressure is detected from the digital signal converted by the first converter.
Abstract:
An electrode sheet including an electrode layer and a support layer may be provided. The electrode layer includes a first electrode and a second electrode. The electrode sheet is used to detect a capacitance change between the first electrode and the second electrode, which is changed according to a relative distance change between the electrode layer and a reference potential layer disposed apart from the electrode sheet. The support layer is made of a material which is bent when a pressure is applied thereto and which is restored to its original state when the pressure is released therefrom.
Abstract:
An electrode sheet including an electrode layer and a support layer may be provided. The electrode layer includes a first electrode and a second electrode. The electrode sheet is used to detect a capacitance change between the first electrode and the second electrode, which is changed according to a relative distance change between the electrode layer and a reference potential layer disposed apart from the electrode sheet. The support layer is made of a material which is bent when a pressure is applied thereto and which is restored to its original state when the pressure is released therefrom.
Abstract:
A smartphone may be provided that includes: a cover layer; an LCD panel which is located under the cover layer and includes a liquid crystal layer, and a first glass layer and a second glass layer between which the liquid crystal layer is placed, wherein at least a portion of a touch sensor which senses touch in a capacitive manner is located between the first glass layer and the second glass layer; and a backlight unit which is located under the LCD panel and includes an optical film, a light source, a reflective sheet and a cover. The backlight unit further includes a pressure sensor attached on the cover between the reflective sheet and the cover.
Abstract:
A pressure detection module may be provided that includes: a first electrode and a second electrode which are located on an insulation layer; and an elastic foam. The elastic foam is located between the first and the second electrodes and a reference potential layer located apart from the pressure detection module. A capacitance between the first electrode and the second electrode is changed according to a relative distance change between the reference potential layer and the first and the second electrodes through a transformation of the elastic foam. A magnitude of a pressure which causes the elastic foam to be transformed is detected according to the capacitance change.