Abstract:
A toner set is used in a printing system that is capable of recycling a print medium and includes a first image forming portion which forms a toner image on the medium with a decolorable toner which is decolored by being heated at a temperature Te (° C.) or higher, a second image forming portion which forms a toner image on the medium with a non-decolorable toner and forms an image on the medium with at least one of the toners, and a decoloring apparatus provided with a heating portion which heats the medium on which a toner image is formed by the image forming apparatus at the temperature Te (° C.) or higher. When heated by the decoloring apparatus, the decolorable toner may be decolored without causing hot offset.
Abstract:
A toner set is used in a printing system that is capable of recycling a print medium and includes a first image forming portion which forms a toner image on the medium with a decolorable toner which is decolored by being heated at a temperature Te (° C.) or higher, a second image forming portion which forms a toner image on the medium with a non-decolorable toner and forms an image on the medium with at least one of the toners, and a decoloring apparatus provided with a heating portion which heats the medium on which a toner image is formed by the image forming apparatus at the temperature Te (° C.) or higher. When heated by the decoloring apparatus, the decolorable toner may be decolored without causing hot offset.
Abstract:
The toner comprises: toner particles each containing a binder resin and a releasing agent; and an organic-inorganic composite fine particle, wherein: the organic-inorganic composite fine particle comprises: a vinyl resin particle containing a vinyl resin, the vinyl resin containing THF-insoluble matter in an amount of 95% by mass or more; and inorganic fine particles which are exposed at surfaces of the respective organic-inorganic composite fine particles, the organic-inorganic composite fine particle 1) has a plurality of convexes derived from the inorganic fine particles on the surfaces thereof, 2) has a number average particle size of 70-500 nm, and 3) has a shape factor SF-2 as measured at a magnification of 200,000 times of 103-120, and an absolute value of difference between an SP value of the releasing agent and an SP value of the vinyl resin is 0.50 (cal/cm3)1/2 or less.
Abstract:
Processes for producing toners are provided. The processes include determining the desired gloss for a given toner, and determining the desired amount of aluminum in the toner to obtain that gloss. Utilizing the processes of the present disclosure, the solids content of an emulsion utilized to produce such a toner, as well as the mixing speed utilized in the aggregation process and the temperature at which aggregation of the toner particles occurs, may then be selected to obtain toner particles possessing the desired amount of aluminum, and thus the desired gloss.
Abstract:
There is provided a toner, including toner mother particles which contain a binder resin, a colorant, and a wax, wherein a difference between a density of the wax in a solid state and a density of the wax in a liquid state is not less than 0.11 g/cm3; the density of the wax in the liquid state is not more than 0.835 g/cm3; and a heat quantity of the wax per unit mass which is obtained from an endothermic peak area at a low temperature side measured by a differential scanning calorimetry is not less than 190 mJ/mg.
Abstract:
Electrostatic latent image developing toner includes at least a binder resin and a releasing agent. In the electrostatic latent image developing toner, a maximum thermal expansion coefficient difference (Swmax−Srmax), which is a difference between a maximum value (Swmax) of a thermal expansion coefficient of the releasing agent and a maximum value (Srmax) of a thermal expansion coefficient of the binder resin, is 1 or more, and a temperature at which the thermal expansion coefficient of the releasing agent reaches a maximum is 60° C. or more to 75° C. or less.
Abstract:
The present invention is to provide a toner which has an excellent balance between heat-resistant storage stability and low-temperature fixability and which is excellent in printing durability even under a wide range of temperature and humidity environments from a low temperature and low humidity environment to a high temperature and high humidity environment. Disclosed is a toner for developing electrostatic images, containing colored resin particles containing a binder resin, a colorant, a softening agent and a retention aid, and an external additive, wherein the retention aid is a copolymer of at least one of acrylic acid ester and methacrylic acid ester and at least one of acrylic acid and methacrylic acid, and wherein the copolymer has an acid value of 0.5 to 7 mgKOH/g, a weight average molecular weight Mw of 6,000 to 50,000, and a glass transition temperature of 60 to 85° C.
Abstract:
A brilliant toner includes flake shape toner particles containing a binder resin and a flake shape metallic pigment. The brilliant toner further includes tabular particles containing a Ti element.
Abstract:
An electrophotographic toner contains an electron donating color former compound, an electron accepting color developing agent, and a binder resin, wherein a toluene insoluble content in the electrophotographic toner is 10% by mass or more and 40% by mass or less, and the toner is decolorized by heating.
Abstract:
A method for reducing toning spacing sensitivity in an electrophotographic process is disclosed. The method includes providing a rotating magnetic member within a conductive non-magnetic development sleeve; providing a developer to the non-magnetic development sleeve for use with the rotating magnetic member including: i) hard magnetic particles with a coercivity of greater than 300 oersted and an induced moment of less than 20 emu per gram at an applied field of 1000 oersted; and ii) soft magnetic particles with a coercivity of less than 300 oersted and an induced moment of greater than 20 emu per gram an applied field of 1000 oersted; and iii) toner particles. The method further includes moving a charged receiving medium into a toner transfer relationship with the developer on the non-magnetic development sleeve so as to provide a developed image on the receiving medium with reduced toning spacing sensitivity.