Abstract:
Apparatus and techniques for detecting malfunctions, anomalies and attacks upon optical devices of a transparent all-optical network, including amplified links and optical nodes, of the network. A portion of an input signal of the optical device and a portion of an output signal from the optical device are coupled to an optical processing unit and a an optical to electrical signal converter. The electrical output signal of the converter is coupled to an electronic processing unit which generates a difference signal which is a function of the input and output signal portions for comparison to a predetermined set of parameters. The result of the comparison is an alarm signal indicative of the occurrence of a malfunction. Also described is an optical comparator capable of generating the difference signal which is indicative of perturbations in the optical device.
Abstract:
A recirculating optical delay line 30 has a laser 32 controlled by wavelength control 33 so as to vary the wavelength of radiation over time to provide a first input 34 to an optical modulator 35. The modulator 35 modulates the intensity of the first input 34 with a pulsed electromagnetic frequency signal 36 to produce a pulsed modulated optical signal 39. The signal 39 passes through an optical coupler 40 into a delay loop 41 having a delay fibre 44 arranged to delay the signal 39 for a predetermined duration. The wavelength control 33 is arranged to vary the first input 35 so as to ensure that overlapping pulses of the signal 39 in the delay loop 41 are at different wavelengths, thereby inhibiting optical mixing effects between the overlapping pulses.
Abstract:
A collimator includes a capillary for holding optical fibers, a gradient index rod lens, and a cylindrical lens holder which holds the gradient index rod lens and has an annular end face connected to an end face of the capillary by an adhesive. By using the holder, the resistant of light power is improved and the degree of freedom of selection of the adhesive is increased.
Abstract:
The invention relates to a pressure sensor comprising a housing (12), a membrane (26) arranged in said housing and which can be deflected by the pressure to be measured, a light source (LED) having an optical axis, a light detector having an optical axis and a light blocker (36) that is coupled to the membrane and that can be deflected thereby, the blocker being arranged in the beam path of the light source. The light source and the light detector are arranged inside the housing (12), wherein their optical axes lie parallel to one another. A first prism (40) is assigned to the light source and a second prism (42) is assigned to the light detector in such a way that an uninterrupted beam path from the light source through both prisms to the light detector is obtained. To this end, the light blocker (36) is arranged between the two prisms.
Abstract:
The present invention relates to a fiber optic sensing device having utility as a roll sensor and/or a pitch sensor. The sensing device comprises at least one optical fiber supported in a structure, a movable mass supported within the structure, and at least one detector for detecting changes in tension in the at least one optical fiber due to movement of the movable mass. In the sensor of the present invention, the optical fiber(s) are the only deformable structures, thus maximizing sensitivity.
Abstract:
Apparatus for optical inspection includes a source of optical radiation, which is adapted to scan a spot of the radiation over a sample, whereby the radiation is scattered from the spot. A detection system includes at least first and second detectors optically coupled to receive the scattered radiation and to generate respective first and second outputs responsive thereto, the detection system being configured so that the first detector detects variations in the scattered radiation with a greater sensitivity than the second detector, while the second detector saturates at a higher intensity of the scattered radiation than does the first detector. A signal processor is coupled to receive the first and second outputs and to determine, responsive to the outputs, locations of defects on the sample.
Abstract:
A high speed interface for optoelectronic devices is disclosed that includes a housing adapted to receive a distal end of a fiber having a slanted end face. The end face of the fiber is optically coupled to an optoelectronic device mounted in the housing. The fiber cladding between the optoelectronic device and the fiber core may be polished or etched to reduce the thickness of the cladding to reduce the separation distance between the optoelectronic device and the slanted end face of the fiber. The reduced separation distance improves the optical coupling efficiency between the end face of the fiber and the optoelectronic device.
Abstract:
A deformation sensor is described which does not require a supplementary sensor to check functionality. This deformation sensor includes an optical transmission medium (nullM1, nullM2), multiple transmission elements (S1, S2), which couple the light of various wavelengths (null1, null2) into the transmission medium (nullM1, nullM2), and multiple reception elements (E1, E2), which selectively couple the transmitted light out of the transmission medium (nullM1, nullM2) according to wavelength. An evaluation unit (AW) detects deviations between the output signals (a1, a2) of the reception elements (E1, E2) and signals a malfunction of the sensor if the deviations exceed a preset measure.
Abstract:
A first optical wave guide 36 and a second optical wave guide 40 are connected to both sides of a planer optical waveguide 32, respectively. The other ends 36b, 40b of the first and second optical wave guides 36, 40 are extended over an upper surface 20 of an optical wiring circuit board 18. An electric wiring circuit 14 is connected to the other ends 36b, 40b of the first and second optical wave guides 36, 40, thereby constituting an optical wiring circuit 16. A plurality of optical wiring circuits 16 are superimposed on one another to thereby form an optical wiring circuits layered body 12. The electric wiring circuit 14 can be connected from one surface of the optical wiring circuit board 18, which makes it possible to facilitate the connection thereof.
Abstract:
With current WDM technology a plurality of individual data channels exist on each fiber. Each of these data channels must be individually monitored in these WDM systems to ensure data signal quality. Monitoring of these signals is accomplished with the use of an optical performance monitor (OPM). An accurate known reference source is required for the OPM to provide reliable monitoring of signal data. The invention couples a reference signal simultaneously with a data signal and provides this combined optical signal to an OPM monitor for the purpose of obtaining high accuracy wavelength data at low cost.