Abstract:
A process is described for hydrotreating a heavy hydrocarbon oil containing a substantial portion of material which boils above 524.degree. C. to form lower boiling materials, which comprises adding to the heavy hydrocarbon oil as solvent a paraffinic, isoparaffinic or cyclic paraffinic hydrocarbon which is also hydrogen-rich and has a critical temperature of less than 500.degree. C. to thereby form a diluted feedstock mixture and subjecting said feedstock mixture to hydrotreating in the presence of activated carbon catalyst at a temperature and pressure substantially at or greater than the critical temperature and pressure of the solvent.
Abstract:
A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.
Abstract:
This invention relates to a process for converting a carbonaceous material to a liquid product using a hydrogen donor solvent. More specifically, this invention relates to a process for hydroconverting carbonaceous material in which a 400.degree.-1000.degree. F. hydroconversion product fraction is further hydrocracked and a hydrocracked fraction is used as the hydrogen donor solvent. An increased quantity of liquid product is achieved by removing an ash residuum from the hydroconversion product fraction prior to the hydrocracking process.
Abstract:
An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.
Abstract:
A process for the hydrogenation of a liquid hydrocarbon-containing charge material, comprising the steps of: (i) supplying a high temperature high pressure liquid phase hydrogenation reactor with two separately and indirectly heated charge streams, (a) a primary charge stream comprising liquid hydrocarbon oils, oil residues, syncrudes, tars or pitches and optionally coal, and hydrogen-containing gas, and (b) a directly heated secondary gaseous charge stream comprising hydrogen-containing gas, and combining said indirectly heated primary charge stream and said indirectly and directly heated secondary charge stream prior to said liquid phase hydrogenation reactor, hydrogenating the combined streams to produce a hydrogenation product and separating the hydrogenation product in a hot separator to give a hot separator head product; wherein said indirectly heated primary and secondary charge streams are heated by separate heat exchange means by heat exchange with said hot separator head product, and said secondary charge stream, after heating by heat exchange, is directly heated with a hydrogenation gas heater.
Abstract:
A process for the pyrolysis of carbonaceous materials at an elevated temperature or an elevated temperature and an elevated pressure in which a fuel is burned in the presence of a combustion supporting material, in an amount sufficient to supply at least the stoichiometric amount of oxygen for combustion of all of the fuel, to produce an effluent containing significant amounts of nitrogen and carbon dioxide and having an elected temperature, passing the effluent to a pyrolysis zone, wihtout removal of components therefrom, to thereby create an elevated temperature within the pyrolysis zone and pyrolyzing the carbonaceous material in the pyrolysis zone in the presence of the effluent from the burning step and at an elevated temperature. The burning step may additionally be carried out at a high flame velocity to produce an effluent having an elevated pressure and the carbonaceous material may thus additionally be pyrolyzed at an elevated pressure.
Abstract:
An improved tar sands derived bitumen and coal liquification process is disclosed wherein substantial percentages of subdivided coal particles and tar sands derived bitumen liquids are mixed and then corefined with hydrogen under hydrocracking conditions, but in the absence of a separate catalyst, at a temperature range of 800.degree. to 900.degree. F. and a pressure of about 2400 psig. The resutling fluid after removal of residual solids is a suitable liquid feedstock for conventional refinery equipment to produce petroleum fractions useful as transportation and heating fuels. Preferably, a portion of the corefined bitumen-coal liquid product may be recycled for mixture with the bitumen liquid and coal. Raw or native tar sands may also be mixed with the liquid butumen and coal in the process.
Abstract:
A liquefaction process for coal lignite or heavy oil is disclosed utilizing a hydrogen-donor solvent. The preferred hydrogen-donor solvent is recovered as a vapor from the liquefaction mixture. The preferred method for converting the vapor into active hydrogen-donor solvent form involves passage of the vapor over a catalyst bed positioned in the vapor space of the catalyst vessel. Novel apparatus for so positioning the catalyst bed is also disclosed.
Abstract:
A method for pretreating a coal hydrogenation feedstock with preheated hydrogen containing a hydrogenation gas under high pressure and at elevated temperature, in a liquid phase slurry system, is disclosed. In this process a mixture of a slurry of finely ground coal and a slurry oil are fed to a preheater before being subjected to a hydrogenation and liquefaction reaction in a cascade of reactors at a pressure of from 100 to 40 bars and a temperature of 420.degree. to 490.degree. C. The reaction products are fed to a hot separator.In the process of the invention, prior to its preheating, a first partial stream of the hydrogenation gas, referred to as the slurry gas, is added to the mixture at process pressure. A second partial stream of the hydrogenation gas is heated by indirect heat exchange with a gaseous hot separator product in a gas heat exchanger. The mixture of slurry and slurry gas is preheated through indirect heat exchange in at least one heat exchanger downstream from the first gas heat exchanger, through which flows the hot separator head product after passing through the first heat exchanger. The heated second partial stream of hydrogenation gas is then added to the preheated mixture of slurry and slurry gas.This process provides improved heat transfer during the preheating of the coal-oil slurry and the mixture in a slurry with a hydrogenation gas.
Abstract:
An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.