Abstract:
A method of aligning one end of a passenger boarding bridge with a doorway of an aircraft includes a step of parking the aircraft within a parking space that is defined adjacent to the passenger boarding bridge. An imager disposed aboard the aircraft is used for scanning a target that is located proximate the parking space, the target including machine-readable information that is uniquely associated with the passenger boarding bridge. Data relating to the machine-readable information of the target is extracted from image data and used for encoding a signal for transmission to a controller of the passenger boarding bridge. The controller determines the presence of the extracted data and compares the data to a unique bridge identifier code for that passenger boarding bridge. When a match is determined, then communication with an aircraft within or proximate a parking space adjacent to that passenger boarding bridge is confirmed.
Abstract:
In a method for aligning an aircraft-engaging end of a passenger boarding bridge with a doorway of an aircraft, a first sensor disposed aboard the aircraft is used for sensing first information relating to a current bridge alignment operation and a second sensor disposed at a location that is remote from the aircraft is used for sensing second information relating to the current bridge alignment operation. The sensed first information and the sensed second information are received at a processor. The processor subsequently determines instruction data for moving the aircraft-engaging end of the passenger boarding bridge along a direction toward the doorway of the aircraft, based upon the sensed first information and the sensed second information.
Abstract:
A system is provided for aligning a first passenger boarding bridge tunnel section with a first doorway of an aircraft and for aligning a second passenger boarding bridge tunnel section with a second doorway of the aircraft includes. The system includes a sensor for sensing an orientation of a first passenger boarding bridge tunnel section when it is in an aligned condition with a first doorway of the aircraft, and for sensing an orientation of a second passenger boarding bridge tunnel section when it is in other than an aligned condition with the second doorway of the aircraft. The sensor is in communication with a controller. The controller is for receiving a signal from the sensor, and for determining the orientation of the first passenger boarding bridge tunnel section and the orientation of the second passenger boarding bridge tunnel section in dependence upon the signal. Based upon the determined orientation information, as well as stored information relating to a location of the second doorway relative to the first doorway, the controller determines a movement for moving the second passenger boarding bridge tunnel section into an aligned condition with the second doorway of the aircraft.
Abstract:
A method for guiding an aircraft toward a stopping position within an aircraft stand of an airport includes receiving a radio frequency (RF) signal from a radio frequency identification (RFID) tag that is carried by the aircraft. The RF signal comprises aircraft-type data that is retrievably stored in an integrated circuit of the RFID tag, the aircraft-type data being indicative of a type of the aircraft. A current location of the aircraft is sensed, and based on the aircraft-type data and the sensed current location of the aircraft, instructions are determined for guiding the aircraft from the current location thereof to a predetermined stopping position for the type of the aircraft. Using a visual docking guidance system (VDGS) associated with the aircraft stand, the instructions are displayed in human-intelligible form for being viewed by a user aboard the aircraft.
Abstract:
A system for preventing a rack fault condition of a passenger boarding bridge includes a plurality of electromagnetic sensors that are disposed for sensing separately a rotational movement of each one of a first and a second electromechanical screw jack, one electromechanical screw jack located adjacent to each lateral sidewall surface of the passenger boarding bridge. The system also includes a control circuit in communication with the plurality of electromagnetic sensors. The control circuit receives signals from the sensors, which signals are indicative of the sensed rotational movement of each one of the first and second electromechanical screw jacks. A value is determined relating to a rotational synchronization of the first and second electromechanical screw jacks. When the determined value is outside a predetermined range of threshold values, a control signal is provided for affecting the rotational movement of at least one of the first and second electromechanical screw jacks.
Abstract:
A method of configuring and reconfiguring a computer system based on user authorization is presented wherein at least some users perceive themselves and available system resources as the entirety of the computer system. The resources are configured through use of virtual resources providing predetermined access privileges and configurations for some users. In another aspect, a method is provided of configuring and reconfiguring a computer system based on biometric user input wherein at least some user biometric input is necessary in order to gain authorized access to a system and to configure the system based on the authorized user. The configuration is, preferably, transparent to the user.
Abstract:
A track changing apparatus for changing a track on an armored vehicle includes a plurality of moveable elements. The plurality of moveable elements of the track changing apparatus allows a track to be manipulated from loose or unmounted state, to a tensioned state wherein the track is located on the track changing apparatus, and finally, to a fully mounted state wherein the track has been transferred onto the armored vehicle. In at least one embodiment, the track changing apparatus may be used to remove a track from an armored vehicle. Methods of using a track changing apparatus are also described, including a method of mounting a track onto an armored vehicle.
Abstract:
A preconditioned air system for cooling an interior cabin space of a parked aircraft includes a thermal energy storage unit, which contains a thermal energy storage medium for storing cooling capacity. During use, a ground-based air-cooling unit is placed in thermal communication with the thermal energy storage medium. The ground-based air-cooling unit draws upon cooling capacity that has been stored previously within the thermal storage medium for cooling the interior cabin space. Storage of cooling capacity is performed during off-peak demand times and/or during low power cost times. System modularity supports cooling of variously sized aircraft even under extreme temperature conditions.
Abstract:
A method for guiding an aircraft toward a stopping position within an aircraft stand of an airport comprises using a visual docking guidance system (VDGS) associated with the aircraft stand for displaying first instructions for guiding the aircraft toward the stopping position. The first instructions are based on an initial determination of the aircraft-type and on first sensed positional information of the aircraft. Aircraft-type data that is stored in a radio frequency identification (RFID) tag carried by the aircraft is then read. Using the VDGS, second instructions are displayed for guiding the aircraft toward the stopping position based on the aircraft-type data and based on second sensed positional information of the aircraft.
Abstract:
A method for wireless communication between an aircraft and a passenger boarding bridge includes assigning an aircraft to a parking space adjacent to the passenger boarding bridge. The aircraft includes a signal-transmitting module for use in automated bridge alignment operations and has a unique aircraft identifier code associated therewith. The step of assigning includes providing the unique aircraft identifier code to an automated bridge alignment system of the passenger boarding bridge. Signals transmitted between the aircraft and the passenger boarding bridge are encoded with the unique aircraft identifier code for transmission between the aircraft and the automated bridge alignment system.