Abstract:
A decodable indicia reading system can comprise a mobile communication terminal and a removable scanning module. The mobile communication terminal can comprise a microprocessor and a memory. The mobile communication terminal can further comprise at least one wired communication interface including a first electromechanical connector mechanically attached to the terminal housing. The removable scanning module can comprise an encoded information reading (EIR) device and/or an illumination module at least partially disposed within the scanning module housing. Both the mobile communication terminal and the scanning module can be at least partially received by a common housing.
Abstract:
There is set forth herein an indicia reading apparatus having a plurality of configurations that can be activated with use of a manually actuated multiple state trigger. According to a first configuration the indicia reading apparatus can project a light pattern while maintaining in an inactive state decoding operations for attempting to decode a decodable indicia by processing of image data. According to a second configuration the indicia reading apparatus can activate decoding operations.
Abstract:
An encoded information reading (EIR) system can comprise a microprocessor, a memory, and at least one RFID reading device, all communicatively coupled to a system bus. The EIR system can further comprise two or more external antennas electrically coupled to a multiplexing circuit. The multiplexing circuit can be configured to electrically couple each antenna to the RFID reading device by using a time division method or a frequency division method. The external antennas can be disposed according to a spatial pattern configured to provide a spatially continuous RFID signal reception within a pre-defined area or volume. The antennas can be configured to receive RFID signals from a plurality of RFID tags attached to a plurality of items and disposed within a radio frequency range of the antennas. The EIR system can be configured to store in its memory a plurality of responses received from the plurality of RFID tags.
Abstract:
A data decoding system that includes a server-side proxy component and at least two back-end computers, where the server-side proxy component is configured, when it receives a decoding request from a client, to select a back-end computer to forward the decoding request to, based on either a pre-defined rule, load estimates for said at least two computers, estimated network throughputs across network paths to the two computers. In response to receiving this request, the back-end computer that is selected is configured to decode the request, which is an image of decodable indicia, by locating the decodable indicia within the image and decoding it into a decoded message. The decodable indicia was provided by a raw image byte stream, a compressed image byte stream, or a partial compressed image byte stream.
Abstract:
A data decoding system that includes a server-side proxy component and at least two back-end computers, where the server-side proxy component is configured, when it receives a decoding request from a client, to select a back-end computer to forward the decoding request to, based on either a pre-defined rule, load estimates for the at least two computers, estimated network throughputs across network paths to the two computers. In response to receiving this request, the back-end computer that is selected is configured to decode the request, which is an image of decodable indicia, by locating the decodable indicia within the image and decoding it into a decoded message. The decodable indicia was provided by a raw image byte stream, a compressed image byte stream, or a partial compressed image byte stream.
Abstract:
A data decoding system can comprise a client computer including an imaging device and one or more servers executing at least one decoding process. The client computer can be configured to acquire an image of decodable indicia and to process the acquired image by: (i) identifying one or more areas of interest within the image; (ii) cropping the image based on the identified areas of interest; (iii) clipping one or more images from the image based on the identified areas of interest; (iv) increasing or reducing a pixel resolution of at least part of the image; (v) converting the image to a grayscale image or to a monochrome image; and/or (vi) compressing the image using a compression algorithm. The decoding process can be configured, responsive to receiving a decoding request comprising the processed image, to decode the decodable indicia and to transmit the decoding operation result to the client computer.
Abstract:
Embodiments of an indicia reading terminal have multiple fields of view (“FOV”). This feature allows decoding of decodable indicia that exhibit different characteristics. These characteristics may affect the ability of the terminal to identify and decode the information stored therein. In one embodiment, the terminal comprises an optical imaging assembly with at least two FOVs. One of the FOVs is adequate to acquire information from decodable indicia with higher density than other decodable indicia.
Abstract:
An EIR terminal containing an image capture device configured to scan an image. The EIR terminal includes a lighting and exposure mechanism. The EIR terminal also includes a camera sensor interface with a stat FIFO. The stat FIFO is configured to receive data from the image capture device. When the stat FIFO, during image scanning, receives a pre-determined amount of image data, it fires an interrupt, which times the lighting and exposure mechanism in the EIR terminal.
Abstract:
A mobile communication terminal can comprise a housing, a microprocessor disposed within the housing, a display incorporated into the housing, and a communication interface communicatively coupled to the microprocessor. The mobile communication terminal can be configured, responsive to receiving a byte sequence representing a character string containing one or more alphanumeric or non-alphanumeric characters, to encode the byte sequence into one or more bar code symbols having a minimum dimension of a smallest element equaling or exceeding a readability threshold value. The mobile communication terminal can be further configured to display the bar code symbols.
Abstract:
A system and method for locating an electronic document, which includes receiving an image of decodable indicia from an EIR terminal, locating said decodable indicia within the image, decoding the decodable indicia into a decoded message which contains: an identifier for an electronic document and the location of the document. Then, receiving delivery instructions regarding the document and executing those instructions.