Abstract:
Partial discharges in a high voltage electric machine can be monitored by a partial discharge monitor connected to the high voltage electric machine successively via a capacitive coupler and a connection cable. The connection cable can have a conductive element designed to self-destruct in the presence of electric current amplitude significantly exceeding expected current amplitudes from said partial discharges, and having diameter designed to avoid creation of additional partial discharges within the cable itself. The connection cable can be light enough to avoid adding excessive weight to the stator windings.
Abstract:
The apparatus can be used for detecting a liquid contaminant in a rotating cavity of an electric machine. The apparatus can have a magnetic field source mounted to a non-rotary base and transmitting a magnetic field across a gap between the base a housing of the cavity, an interrogation circuit having a coil magnetically coupled to the magnetic field source across the gap via the magnetic field, and a distal circuit portion having electrical contacts separated by a spacing fluidly communicating with the cavity; and a detection circuit mounted to the base and having a coil magnetically coupled to the magnetic field and a detector detecting a variation occurring in the detection circuit upon change of a permittivity of the liquid across the spacing, the variation being indicative of the liquid contaminant.
Abstract:
The method includes receiving a real-time signal containing information pertaining to amplitude and frequency of vibrations of a machine component over a frequency spectrum including a first analysis bandwidth and a second analysis bandwidth, and using the real-time signal to determine values indicative of the severity of vibrations occurring at frequencies in the first analysis bandwidth in a first unit of one of displacement, velocity, and acceleration, and determine values indicative of the severity of vibrations occurring at frequencies in the second analysis bandwidth in a second unit of one of displacement, velocity and acceleration, the second unit being different from the first unit; and associating the determined values in a common unit representing comparable severity of vibrations in the first analysis bandwidth and the second analysis bandwidth.
Abstract:
A method for detecting shorted turns in the windings of salient rotor poles of an electric rotating machine, the method comprising: for each one of the salient rotor poles, measuring a radial magnetic flux between a stator of the electric rotating machine and the salient rotor pole, and measuring a thickness of an air-gap between the stator and the salient rotor pole; for each one of the salient rotor poles, determining an expected radial flux using the measured radial magnetic flux and the measured thickness of the air-gap; and identifying shorted turns by comparing, for each one of the salient rotor poles, the measured radial magnetic flux to the expected radial magnetic flux.
Abstract:
A temperature sensor, capable of operating in electromagnetic and/or electric environments such as electrical generators, motors and transformers and/or in environments where vibratory conditions are frequent or continuous, contains at least one light emitting optic fiber and one light receiving optic fiber and an electrically non-conductive dilatable object which variably occults the emitted light as the object's temperature varies. The light receiving optic fiber transmits light intensity and light intensity changes to an electronic device that may include a photometer and light-to-temperature computing equipment.
Abstract:
The method can include building a current local state for the managed devices including retrieving from the managed devices, via a local network, a plurality of current states of corresponding managed devices, and integrating the plurality of current states into the current local state; retrieving, from a remote computer, via a telecommunications network, a target local state for the managed devices; computing a difference between the target local state and the current local state; computing actions based on the difference between the target local state and the current local state, said actions to be executed by the managed devices for bringing the current local state into compliance with the target local state; and communicating the actions to the managed devices, via the local network, for execution.
Abstract:
The method can include computing actions corresponding to the difference between a current local state of the managed devices and a target local state for the managed devices, said actions to be executed by the managed devices for bringing the current local state into compliance with the target local state; communicating the actions to the managed devices, via the local network, for execution; subsequently to said communicating instructions, monitoring current states of the managed devices, including detecting a change in the current states of the managed devices, the change reflecting the execution of at least one of the actions at the managed devices, and updating the current local state to reflect the change; computing updated actions corresponding to an updated difference between the current local state and the target local state, following said updating, said at least one executed action being absent from the updated actions; communicate the updated actions to the managed devices, via the local network.
Abstract:
A method for non-intrusive determination of an internal temperature of a given area of an electrical machine stator, comprises obtaining a temperature gradient between an internal wall of the stator and an external wall of the stator, obtaining temperature measurements at locations on the external wall of the stator, and using the temperature gradient and the external temperature measurements to extrapolate corresponding internal temperatures of the stator.
Abstract:
The method can include computing actions corresponding to the difference between a current local state of the managed devices and a target local state for the managed devices, said actions to be executed by the managed devices for bringing the current local state into compliance with the target local state; communicating the actions to the managed devices, via the local network, for execution; subsequently to said communicating instructions, monitoring current states of the managed devices, including detecting a change in the current states of the managed devices, the change reflecting the execution of at least one of the actions at the managed devices, and updating the current local state to reflect the change; computing updated actions corresponding to an updated difference between the current local state and the target local state, following said updating, said at least one executed action being absent from the updated actions; communicate the updated actions to the managed devices, via the local network.
Abstract:
The capacitive sensor can have a sensing body having two flat conductor elements positioned parallel to one another and held spaced apart from one another, and having a thickness normal to the flat conductor elements, the sensing body having at least one aperture formed across its thickness. The capacitive sensor can be used to measure an air gap between a stator and rotor of a rotary electric machine, and the presence of the apertures can facilitate ventilation and/or improve linearization process of capacitive sensor through redistribution of its current vs distance signal along the measuring range, thus potentially increasing signal to noise ratio where it is the challenging to do so.