Image-based risk score—A prognostic predictor of survival and outcome from digital histopathology
    2.
    发明授权
    Image-based risk score—A prognostic predictor of survival and outcome from digital histopathology 有权
    基于图像的风险评分 - 从数字组织病理学的生存和结果的预后预测

    公开(公告)号:US09002092B2

    公开(公告)日:2015-04-07

    申请号:US13147537

    申请日:2010-02-02

    Abstract: The present invention relates to an image-based computer-aided prognosis (CAP) system and method that seeks to replicate the prognostic power of molecular assays in histopathology and pathological processes, including but not limited to cancer. Using only a tissue slide samples, a mechanism for digital slide scanning, and a computer, the present invention relates to an image-based CAP system and method which aims to overcome many of the drawbacks associated with prognostic molecular assays (e.g. Oncotype DX) including the high cost associated with the assay, limited laboratory facilities with specialized equipment, and length of time between biopsy and prognostic prediction.

    Abstract translation: 本发明涉及一种基于图像的计算机辅助预后(CAP)系统和方法,其寻求在组织病理学和病理过程(包括但不限于癌症)中复制分子测定的预后能力。 本发明涉及一种基于图像的CAP系统和方法,其目的在于克服与预后分子测定(例如Oncotype DX)相关的许多缺点,包括 与测定相关的高成本,具有专门设备的实验室设施有限,以及活检和预后预测之间的时间长度。

    Boosted consensus classifier for large images using fields of view of various sizes
    3.
    发明授权
    Boosted consensus classifier for large images using fields of view of various sizes 有权
    使用各种尺寸视野的大图像的增强共识分类器

    公开(公告)号:US09235891B2

    公开(公告)日:2016-01-12

    申请号:US13978927

    申请日:2012-01-10

    Abstract: A system and method for predicting disease outcome by analyzing a large, heterogeneous image by a boosted, multi-field-of-view (FOV) framework, based on image-based features from multi-parametric heterogeneous images, comprises (a) inputting the heterogeneous image; (b) generating a plurality of FOVs at a plurality of fixed FOV sizes, the method for generating the plurality of FOVs at a plurality of fixed FOV sizes comprising dividing simultaneously, via the computing device, the large, heterogeneous image into (i) a plurality of FOVs at a first fixed FOV size from among the plurality of fixed FOV sizes; and (ii) a plurality of FOVs at a second fixed FOV size from among the plurality of fixed FOV sizes; (c) producing simultaneously for the heterogeneous image a combined class decision for: (i) the plurality of FOVs at the first fixed FOV size, and (ii) the plurality of FOV s at the second fixed FOV size.

    Abstract translation: 通过基于来自多参数异构图像的基于图像的特征,通过增强的多视场(FOV)框架分析大的异质图像来预测疾病结果的系统和方法包括(a)输入 异质图像 (b)以多个固定FOV大小生成多个FOV,所述用于以多个固定FOV大小生成多个FOV的方法包括经由计算装置同时将大的异构图像划分为(i) 多个固定FOV尺寸中的第一固定FOV尺寸的多个FOV; 和(ii)多个固定FOV尺寸中的第二固定FOV尺寸的多个FOV; (c)同时产生用于异质图像的组合类决定:(i)以第一固定FOV大小的多个FOV,以及(ii)第二固定FOV大小的多个FOV。

    BOOSTED CONSENSUS CLASSIFIER FOR LARGE IMAGES USING FIELDS OF VIEW OF VARIOUS SIZES
    4.
    发明申请
    BOOSTED CONSENSUS CLASSIFIER FOR LARGE IMAGES USING FIELDS OF VIEW OF VARIOUS SIZES 有权
    使用各种不同尺寸视图的大图像增强共享分类器

    公开(公告)号:US20140064581A1

    公开(公告)日:2014-03-06

    申请号:US13978927

    申请日:2012-01-10

    Abstract: A system and method for predicting disease outcome by analyzing a large, heterogeneous image by a boosted, multi-field-of-view (FOV) framework, based on image-based features from multi-parametric heterogeneous images, comprises (a) inputting the heterogeneous image; (b) generating a plurality of FOVs at a plurality of fixed FOV sizes, the method for generating the plurality of FOVs at a plurality of fixed FOV sizes comprising dividing simultaneously, via the computing device, the large, heterogeneous image into (i) a plurality of FOVs at a first fixed FOV size from among the plurality of fixed FOV sizes; and (ii) a plurality of FOVs at a second fixed FOV size from among the plurality of fixed FOV sizes; (c) producing simultaneously for the heterogeneous image a combined class decision for: (i) the plurality of FOVs at the first fixed FOV size, and (ii) the plurality of FOV s at the second fixed FOV size.

    Abstract translation: 通过基于来自多参数异构图像的基于图像的特征,通过增强的多视场(FOV)框架分析大的异质图像来预测疾病结果的系统和方法包括(a)输入 异质图像 (b)以多个固定的FOV大小生成多个FOV,所述用于以多个固定的FOV大小生成多个FOV的方法包括经由计算装置将大的异构图像同时划分为(i) 多个固定FOV尺寸中的第一固定FOV尺寸的多个FOV; 和(ii)多个固定FOV尺寸中的第二固定FOV尺寸的多个FOV; (c)同时产生用于异质图像的组合类决定:(i)以第一固定FOV大小的多个FOV,以及(ii)第二固定FOV大小的多个FOV。

    IMAGE-BASED RISK SCORE-A PROGNOSTIC PREDICTOR OF SURVIVAL AND OUTCOME FROM DIGITAL HISTOPATHOLOGY
    5.
    发明申请
    IMAGE-BASED RISK SCORE-A PROGNOSTIC PREDICTOR OF SURVIVAL AND OUTCOME FROM DIGITAL HISTOPATHOLOGY 有权
    基于图像的风险评分 - 来自数字病理学的生存和预测的预后因素

    公开(公告)号:US20120106821A1

    公开(公告)日:2012-05-03

    申请号:US13147537

    申请日:2010-02-02

    Abstract: The present invention relates to an image-based computer-aided prognosis (CAP) system and method that seeks to replicate the prognostic power of molecular assays in histopathology and pathological processes, including but not limited to cancer. Using only a tissue slide samples, a mechanism for digital slide scanning, and a computer, the present invention relates to an image-based CAP system and method which aims to overcome many of the drawbacks associated with prognostic molecular assays (e.g. Oncotype DX) including the high cost associated with the assay, limited laboratory facilities with specialized equipment, and length of time between biopsy and prognostic prediction.

    Abstract translation: 本发明涉及一种基于图像的计算机辅助预后(CAP)系统和方法,其寻求在组织病理学和病理过程(包括但不限于癌症)中复制分子测定的预后能力。 本发明涉及一种基于图像的CAP系统和方法,其目的在于克服与预后分子测定(例如Oncotype DX)相关的许多缺点,包括 与测定相关的高成本,具有专门设备的实验室设施有限,以及活检和预后预测之间的时间长度。

Patent Agency Ranking