Abstract:
A cable television tap (500) for receiving a forward signal including an information signal and a power signal. The tap (500) includes a diplex filter (520) for receiving the forward signal and for separating the information signal from the power signal at outputs of the diplex filter (520) and a plurality of subscriber ports (535) coupled to an output of the diplex filter (520) for receiving the information signal such that the information signal can be accessed at each of the plurality of subscriber ports (535). The tap (500) also includes a removable port device (555) coupled to the other output of the diplex filter (520) for receiving the power signal, and the port device (555) has a connector (550) so that the power signal can be accessed. According to the present invention, when the port device (555) is coupled to the tap (500), the information signal can only be accessed at the subscriber ports (535), and the power signal can only be accessed at the connector (550) of the port device (555). This provides a way to separately transmit the information signal and the power signal over the subscriber property to the subscriber.
Abstract:
An electronic module that includes a housing and electronics that has a divider (215) that is substantially conductive, rectangular, and planar. The divider (215) is hingeably coupled to the housing with hinges (225). The divider (215) defines an upper section (210) and a lower section (205) within the housing, wherein the divider (215), in an open position, allows access to electronics (223) within the lower section (205), and the divider (215), in a closed position, allows access to electronics (223) within the upper section (210). The divider (215), in the closed position, provides electromagnetic shielding between the electronics (223) in the upper section (210) and the electronics (223) in the lower section (205).
Abstract:
A chassis (200) having cable management features includes a frame (210) for holding communication modules (105) that have cables (305) coupled to front surfaces thereof. The chassis also includes cable tunnels (225) formed beneath the frame (210). The cable tunnels (225) are each defined by sidewalls and upper and lower surfaces that form an aperture through the tunnel (225), and the module cables (305) from a particular module (105) can be routed through its associated cable tunnel (225) beneath the frame (210). The chassis (200) also includes cable guides (230), each defining an opening associated with a particular communication module (105), wherein cables (305) coupled to that communication module (105) can be routed through its associated cable tunnel (225) and then through its associated cable guide (230). The cable tunnels (225) and cable guides (230) route cables (305) coupled to corresponding communication modules (105) into groups, each associated with a particular communication module or particular modules (105).
Abstract:
A surge-gap device (300) includes two electrodes (310, 315), having an inside portion and an outside portion, and an insulator material (320), which secures the two electrodes (310, 315). The insulator material (320) has an opening through the material to expose an open-air gap (325) that is defined by the space between the two inside portions of the electrodes (310, 315). In cases of a voltage surge, the surge-gap device permits an arc to pass between the proximate inside portions of the electrodes (310, 315) across the open-air gap (325), which gives a current surge a low impedance path to ground. Also included is a fastener (305) for electrically coupling the surge-gap device (300) to a ground plane (220) of an external electrical device (300) for suppressing the voltage and current surges.
Abstract:
Systems and methods for decoding and processing back-to-back transactions for an addressable cable television tap. The addressable tap includes an input port for receiving an input signal and output ports for providing outgoing signals to receiving equipment and a controller for providing addressable per port (RF) switching. The controller is adapted to communicate with multiple addressable ports. The controller also includes storage for storing the remaining portions of partially processed commands. Further, the addressable tap includes a relay for enabling or disabling signals to the addressable output ports. Processing commands in the addressable tap includes receiving continuous commands having back-to-back transactions, from a headend and forwarding signals to receiving equipment. For a connect request, the addressable tap accepts the connect request as valid when, upon decoding each transaction, two consecutive transactions out of six are the same, and for a disconnect request, accepting the disconnect request as valid when, upon decoding each transaction, four consecutive transactions out of twelve transactions are the same.