摘要:
This invention describes a method and apparatus for serving the buffers of a buffer system to avoid overflow of buffers. More specifically, this invention describes which buffers of the system should be first selected for servicing so as to avoid overflow. In addition, with this invention, the buffer size of each buffer in the system is independent of the number of links of the system.
摘要:
In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). This novel design optimizes the interplay of electrical pumping, radiation and optical extraction to increase the optical output to several times that of conventional LEDs. A transparent and conductive ITO layer is added to the surface of an epitaxial structure to reduce the interface reflection in addition to functioning as a current spreading layer. The present invention creates solid state lighting with high optical output and high power efficiency.
摘要:
In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions with different characteristics located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). The present invention creates solid state lighting with high optical output and high power efficiency.
摘要:
The present invention identifies boundaries of data packets within a serial data stream and transfers data belonging to these packets to an external device for processing or storage. Identification is accomplished at relatively high speed by parallel processing techniques using a state machine. Data may be transmitted through separate channels to a multiple channel link. This link selects one channel at a time for a predetermined period of time, and allows the data stream from the selected channel to be transmitted to the flag detector. Some of the bits in the digital data stream may be part of a flag. The flag detector generates a value corresponding to the number of bits which may correspond to a portion of a flag in the data that has entered the flag detector. Additional data from the digital data stream entering the flag detector may include the remaining bits of the flag. If so, then the detector indicates that a flag has been found. Based on the location of a flag, boundaries may be determined for data in a packet.
摘要:
A very fast method for correcting the spelling of a word or phrase in a document proceeds in two steps: first applying a very fast approximate method for eliminating most candidate words from consideration (without computing the exact edit distance between the given word whose spelling is to be corrected and any candidate word), followed by a “slow method” which computes the exact edit distance between the word whose spelling is to be corrected and each of the few remaining candidate words. The combination results in a method that is almost as fast as the fast approximate method and as exact as the slow method.
摘要:
In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). This novel design optimizes the interplay of electrical pumping, radiation and optical extraction to increase the optical output to several times that of conventional LEDs. A transparent and conductive ITO layer is added to the surface of an epitaxial structure to reduce the interface reflection in addition to functioning as a current spreading layer. The present invention creates solid state lighting with high optical output and high power efficiency.